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Abstract—Using only one training symbol, a novel cross ambi-
guity function (CAF) based integer frequency offset (IFO) estima-
tor for OFDM systems is proposed. From the energy distribution
characteristics of the ideal CAF, an energy-detection based metric
is obtained. By designing a training symbol whose ambiguity
function (AF) is a valid approximation of the ideal thumbtack-
type AF, a high-accuracy and full-range IFO estimation can be
achieved over frequency-selective fading channels. Furthermore,
the adoption of the CAF expression in terms of time-domain
signals keeps the complexity of the proposed algorithm at a
relatively low level. Simulation results verify its superior accuracy
of the IFO estimation over conventional algorithms.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been shown to possess high spectral efficiency and robustness
against frequency-selective fading [1]. However, a well-known
problem of OFDM is its susceptibility to the frequency offset
that is mainly caused by Doppler shifts and/or local oscillators
mismatch between the receiver and the transmitter [2]. In prac-
tice, the normalized frequency offset can usually be divided
into an integer part (multiple of the subcarrier spacing) and a
fractional part (less than one-half of the subcarrier spacing)
so that they can be estimated separately. If not accurately
estimated and compensated, the fractional frequency offset
can destroy the orthogonality of the subcarriers and result in
inter-carrier interference, while the integer frequency offset
(IFO) will lead to a circular shift of the subcarrier indices and
degrade performance.

Currently, commonly-used IFO estimation approaches are
training assisted and implemented via time-domain or
frequency-domain correlations [3]-[6]. A repetitive-structure
training symbol is proposed in [3], and the frequency offset
is estimated via time-domain correlation. However, the esti-
mation range is limited by the number of identical parts, and
the number of identical subparts. To obtain a full acquisition
range, frequency-domain correlation based approaches are
usually adopted. In the algorithm proposed by Schmidl and
Cox, which we label S&C [4], two consecutive differentially
encoded training symbols in frequency domain are utilized.
An improvement to the S&C approach, which is referred to
as ML IFO estimation, is proposed in [5] in which the IFO
estimation is also carried out by frequency-domain correlation-
s. Two training symbols are required in the aforementioned
algorithms, resulting in a lower efficiency in bandwidth. To

reduce the training overhead, a differential OFDM (DOFDM)
based IFO estimation method using only one training symbol
is proposed in [6]. However, the estimation performance would
degrade severely in the presence of frequency-selective fading
channels.

In this paper, by using only one training symbol, a
high-accuracy IFO estimation algorithm with robustness to
frequency-selective fading is proposed. More specifically, an
energy-detection based estimation metric is constructed ac-
cording to the energy distribution of the cross ambiguity
function (CAF). The superior estimation resolution can be
achieved as long as the training symbol has an ambiguity
function (AF) surface with only one single sharp peak, which
is a valid approximation of the ideal thumbtack-type AF
surface and can be easily designed in the frequency domain.
Furthermore, the computational complexity of the proposed
algorithm can be kept at a relatively low level by utilizing the
CAF expression in terms of time-domain signals.

Notations: The superscript T and ∗ denote transpose and
complex conjugate, respectively; ∥·∥ denotes Euclidean norm;
C (m, :) and C (:, n) denote the mth row and nth column
of matrix C, respectively; ⟨·⟩N represents the modulo-N
operation and δ (·) is the Dirac delta function; NC(µ, σ

2) is a
complex normal distribution with mean µ and variance σ2; and
χ2(k) is a chi-square distribution with k degrees of freedom.

II. SYSTEM MODEL

Consider a discrete-time baseband OFDM system with the
lengths of the IFFT/FFT and cyclic prefix (CP) equal to N
and Ng, respectively. We assume x(n) (0 ≤ n ≤ N−1) is the
local training symbol for IFO estimation, which is generated
as follows:

x (n) =
1

N

N−1∑
k=0

X (k) ej2πkn/N (1)

where X(k) (0 ≤ k ≤ N − 1) is the corresponding
frequency-domain training symbol. Assuming that the length
of the discrete-time channel impulse response (CIR) is L,
we denote h = [h(0), h(1), · · · , h(L− 1)]T and H (k) =∑L−1
l=0 h(l) e−j2πlk/N as the discrete-time CIR and the chan-

nel frequency response, respectively. Moreover, the channel is
assumed to be time invariant over the OFDM block duration.
After being transmitted through the channel and corrupted by
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Gaussian noise, the received training block can be expressed
as

y (n) =
L−1∑
l=0

h(l)x (⟨n− l⟩N ) ej(2πεn/N+θ0) + w (n) (2)

where w(n) is the time-domain complex AWGN; ε and θ0 are
the normalized IFO and initial phase, respectively. Without
loss of generality, we assume θ0 = 0 for simplicity. Since
IFO is the focus here, we assume that the fractional frequency
offset and timing offset have been perfectly estimated and
compensated. Then, the FFT output of the received block is

Y (k) = H (⟨k − ε⟩N )X (⟨k − ε⟩N ) +W (k) (3)

where W (k) represents the frequency-domain complex
AWGN with zero mean and variance σ2

n.

III. CAF BASED IFO ESTIMATION

A. Energy-detection Based IFO Estimation metric
AFs were initially applied in target resolution and parameter

estimation for radar systems [7]-[8]. Applications of AF can
also be found in pulse design and optimization for OFDM
systems [9]-[10].

To have a better understanding of the proposed IFO algo-
rithm, we review the concepts of AF and CAF as follows. AF,
a 2-D function of time delay and frequency offset, is defined as
the inner product of a signal and its time-delayed, frequency-
shifted version [7]. The AF of the local training symbol x(n),
denoted as Axx, is given by

Axx (τ, υ) =
N−1∑
n=0

x (n)x∗ (⟨n− τ⟩N ) e−
j2πυn
N (4)

where τ and υ represent the time delay and frequency offset,
respectively. As is well known, it is more convenient for
OFDM systems to design the training symbol in the frequency
domain. Hence, the AF Axx can be alternatively expressed by
the corresponding frequency-domain signal X(k), i.e.,

Axx (τ, υ) =
1

N

N−1∑
k=0

X (k + υ)X∗ (k)e
j2πkτ
N (5)

Similarly, the CAF, which is denoted as Ayx, of the received
training block y(n) and the local training symbol x(n) can be
computed using the corresponding frequency-domain signals
as follows

Ayx (τ, υ) =
1

N

N−1∑
k=0

Y (k + υ)X∗ (k) · e
j2πkτ
N (6)

Moreover, we define the following variables, as
• |Axx|2: AF surface, the set of

{
|Axx (τ, υ)|2

}
• |Ayx|2: CAF surface, the set of

{
|Ayx (τ, υ)|2

}
• Γυ = Axx (: , υ): the υth AF Doppler cut
• Ψυ = Ayx (: , υ): the υth CAF Doppler cut
Using (6) and (3), the relationship between Ψυ and Γυ can

be written as

Ψυ(τ) =
L−1∑
m=0

e−
j2πm(υ−ε)

N h(m)Γυ−ε (⟨τ −m⟩N ) +Gυ(τ)

(7)

where Gυ (τ)
∆
= 1

N

∑N−1
k=0 W (k + υ)X∗ (k) e

j2πkτ
N is the

noise term. This shows that a CAF Doppler cut is a linear
transformation of an AF Doppler cut corrupted by additive
noise Gυ(τ).

It is well known that an AF surface is ideal if it is non-
zero only at (0,0) on the 2-D time-delay/frequency-offset plane
[11]. Obviously, the corresponding AF can be expressed as

Axx (τ, υ) =

{
Q τ = υ = 0
0 otherwise

(8)

where Q is a real positive constant. This type of AF is usually
referred to as an ideal thumbtack-type AF, which could yield
superior target-resolution capabilities [11]. Then, from (7) and
(8), the corresponding ideal CAF∗ Doppler cuts have the
following expression

Ψυ (τ) =

{
Q · h(τ) +Gυ(τ) υ = ε, 0 ≤ τ ≤ L− 1

Gυ(τ) otherwise
(9)

From (9) and (7), we can show that, on the 2-D time-
delay/frequency-offset plane, Ayx(τ, υ) and h(τ) are corre-
lated only in the region {(τ, υ)|0 ≤ τ ≤ L− 1; υ = ε}. Base
on this observation, if h is available for the IFO estimation,
an intuitive method is to compute the cross-correlations of h,
and every Doppler cut Ψυ in the region Ω = {(τ, υ)|0 ≤ τ ≤
L − 1,−εmax ≤ υ < εmax}; then an estimate of IFO can
be obtained by determining the maximum modulus. Denote
ε̂ as the trail values of IFO, then the aforementioned metric
for IFO estimation based on the peak-detection of the cross-
correlations can be constructed as

ε̂ = argmax
−εmax≤ε̂<εmax

∣∣∣∣∣
L−1∑
τ=0

h(τ)
∗
Ψε̂(τ)

∣∣∣∣∣ (10)

Unfortunately, (10) is hard to be realized since a valid
channel estimation could not be obtained before frequency
offset is estimated and compensated. Nevertheless, from (9),
an estimate of CIR, ĥ, can be constructed as

ĥ(τ) = Ψε̂(τ)/Q (11)

where 0 ≤ τ ≤ L − 1. This means that, for a given
ε̂, a corresponding channel estimation ĥ can be obtained.
Substituting (11) into (10), IFO estimation based on an ideal
energy distribution ε̂ can be obtained by finding ε̂ to maximize
the following metric

M (ε̂) =
L−1∑
τ=0

|Ψε̂ (τ)|2 (12)

B. Training Symbol Design

Although the ideal thumbtack-type AF can provide an ideal
frequency offset resolution, unfortunately, such a shape of AF
is impossible to attain [12]. Naturally, next step is to find
a practical training symbol whose AF can approximate the
ideal thumbtack-type AF. In turn, IFO estimation with high

∗Unless otherwise stated, “CAF of the training symbol” in this paper
represents the CAF of the received training block and the local training
symbol.
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Fig. 1. AF surface (N = 512, α = 2)

accuracy can be obtained by adopting the same metric in
(12). By investigating several commonly used training symbols
for OFDM systems, a frequency-domain symbol (denoted
by X(k)) with constant amplitude (α) and random phase is
chosen. Usually, X(k) can be approximately modeled as i.i.d.
random variables (RV) with zero mean and variance α2.

In order to verify the validity of the selected training
symbol, the AF characteristics for X(k) are analyzed and com-
pared with the ideal thumbtack-type AF from the perspective
of energy distribution. For any given υ (0 ≤ υ ≤ N−1), from
(5), the energy of the υth AF Doppler cut is given by

∥Γυ∥2 = α4 (13)

which implies that all AF Doppler cuts have the same energy.
Using (5), it is easy to show that the 0th (i.e., υ = 0) AF
Doppler cut is

Γυ (τ) = α2δ (τ) (14)

Then, it is obvious that the energy of the 0th AF Doppler cut
is concentrated at the 0th time delay.

For υ ̸= 0, using the statistical characteristics of X(k), the
Central Limit Theorem and (5), we can deduce that {Γυ(τ)}
are nearly identically distributed complex Gaussian RVs with
zero mean and variance σ2

γ = α4/N , i.e.,

Γυ (τ) ∼ NC(0, α4/N), for υ ̸= 0 (15)

In turn, {|Γυ(τ)|2} are nearly identically distributed complex
χ2-distributed RVs with degree of freedom 2, i.e., |Γυ (τ)|2 ∼
σ2
γ

2 χ2(2). This conclusion implies that each element of the
υth (υ ̸= 0) AF Doppler cut has an average energy of α4/N .
Hence, the total energy α4 of the υth (υ ̸= 0) AF Doppler cut
is uniformly spread over all N time delays in the statistical
sense.

From the above analyses of the AF energy distribution,
we can see that the proposed training symbol has only one
single sharp peak on its AF surface as shown in Fig. 1. This
verifies that the AF of the proposed training symbol is a valid
approximation of the ideal thumbtack-type AF.

The CAF characteristics of the proposed training symbol
can be analyzed in a similar way as follows. Since {W (k)}
are i.i.d. Gaussian RVs with the distribution of NC(0, σ

2
n) and
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Fig. 2. CAF surface (N = 512, α = 2, ε = 5, L = 26, η = 25dB,
max{|h(n)|2} = 0.6919)

are independent of {X(k)}, we can show that the noise term
Gυ(τ) in (7) are identically distributed zero-mean complex
Gaussian RVs with variance σ2

g . Since {X(k)} have a constant
amplitude α, σ2

g can be given by σ2
g = α2σ2

n/N . Then, using
(7) and (13), the energy of the υth (0 ≤ υ ≤ N − 1) CAF
Doppler cut can be computed as

∥Ψυ∥2 =
N−1∑
τ=0

|Ψυ(τ)|2 ≈ ∥Γυ∥2
L−1∑
l=0

|h(l)|2 +Nσ2
g

= α4
L−1∑
l=0

|h(l)|2(1 + η−1)

(16)

where η
∆
= α2

σ2
n

∑L−1
l=0 |h(l)|2 is the signal-to-noise ratio (SNR).

From (16) we can see that, all CAF Doppler cuts have
approximately the same energy. It also should be noted that,
the approximation in (16) will approach the equality with an
increase in N and/or η.

Then, we investigate the energy distribution of the CAF
Doppler cut whose index υ equals the true IFO ε. Using (7)
and (14), we get

Ψυ (τ) = α2h (τ) +Gυ(τ), for 0 ≤ τ ≤ L− 1 (17)

Since h(τ) is defined over [0, L− 1], then we have

L−1∑
τ=0

|Ψυ(τ)|2 ≈ α4
L−1∑
l=0

|h(l)|2 + Lσ2
g

= α4
L−1∑
l=0

|h(l)|2
(
1 +

L

N
η−1

) (18)

Similar to (16), the approximation in (18) will approach the
equality with an increase in N and/or η.

On the other hand, for υ ̸= ε, we can show that {|Ψυ(τ)|2}
are nearly identically distributed complex χ2-distributed RVs
with degree of freedom 2, i.e.,

|Ψυ (τ)|2 ∼
σ2
ψ

2
χ2(2) (19)

where σ2
ψ = σ2

g + σ2
γ

∑L−1
l=0 |h(l)|2 = α4

N

∑L−1
l=0 |h(l)|2(1 +

η−1). Similar to AF which has a uniformly spread energy
when υ ̸= 0, the energy of the υth (υ ̸= ε) CAF Doppler
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cut is also uniformly spread over all N time delays in the
statistical sense.

Therefore, we conclude that for a frequency-domain training
symbol with constant amplitude and random phase, the main
sharp peaks only appear over the first L time delays on the
CAF Doppler cut when υ = ε (see Fig. 2). This demonstrates
the validity of the proposed training symbol, which ensures
that the metric in (12) is applicable for the proposed training
sequence to achieve high-accuracy IFO estimation.

C. Performance Analysis

Using the metric in (12), a CAF based IFO estimator is
constructed as follows,

ε̂ = argmax
−εmax≤ε̂<εmax

M(ε̂) = argmax
−εmax≤ε̂<εmax

L−1∑
τ=0

|Ψε̂ (τ)|2 (20)

Since M(ε̂) is just the energy of the ε̂th CAF Doppler cut over
[0, L − 1], we analyze the performance from the perspective
of the CAF energy distribution. From Sec. III-B, we can
deduce that, at high SNR region, the maximum value of the
energy in (20) will be obtained when ε̂ = ε. Moreover, since
the domain of definition of υ in CAF is [−N/2, N/2), the
effective searching range of ε̂ can be up to [−N/2, N/2). This
means that the proposed algorithm has the capability of full-
range IFO estimation, the same as for DOFDM, S&C and
ML.

Moreover, probabilities of correct and incorrect estimations
are analyzed. First, as described in Sec. III-B, for the proposed
training symbol, an increase in N will result in a sharper main
peak around (0, 0) on its AF surface. Then, for a given SNR, a
larger energy difference between the υth (υ = ε) CAF Doppler
cut and any other CAF Doppler cut (υ ̸= ε) in the region Ω =
{(τ, υ)|0 ≤ τ ≤ L − 1,−εmax ≤ υ < εmax} is consequently
provided. On the other hand, it is obviously that an increase
in η will make the energy difference more distinct. Hence, the
accuracy of IFO estimation will be improved with an increase
in N and/or η. The impact of N and η on the IFO estimation
can be alternatively explained from the probability of incorrect
IFO estimations. From (19) we can show that, for an incorrect
ε̂, M (ε̂) has a distribution of

σ2
ψ

2 χ2(L) with mean Lσ2
ψ and

variance Lσ4
ψ , where σ2

ψ = 1
N (α2σ2

n + α4
∑L−1
l=0 |h(l)|2) =

α4

N

∑L−1
l=0 |h(l)|2(1 + η−1). Hence, for a given CIR length L,

an increase in N and/or η will result in a decrease in both
the expected value and variance of M (ε̂). In other words, the
probability of incorrect IFO estimation is reduced.

Moreover, the complexity of the proposed IFO estimation
scheme is analyzed. From (20) we can see that, in order to
obtain a full acquisition range IFO estimation, N Doppler
cuts of the CAF are involved. As stated earlier, the Doppler
cuts of CAF can be computed using either frequency-domain
or time-domain signals. When the frequency-domain signals
based expression (6) is used, N IFFT operations are required.
However, we can alternatively represent the CAF in terms of
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Fig. 3. Performance comparison for AWGN channels

time-domain signals, as

Ayx (τ, υ) =
N−1∑
n=0

y (n)x∗ (⟨n− τ⟩N ) e−
j2πυn
N (21)

where τ ∈ [0, L − 1], υ ∈ [−N/2, N/2) represent the time
delay and frequency offset, respectively. Obviously, in (21),
only L FFT operations are needed, while L is usually far less
than N for OFDM systems. By substituting (21) into (20), a
lower complexity IFO estimation is given by

ε̂ = argmax
−N/2≤ε̂<N/2

L−1∑
τ=0

∣∣∣∣N−1∑
n=0

y (n)x∗ (⟨n− τ⟩N )e−
j2πε̂n
N

∣∣∣∣2
(22)

It should be noted that, although (21) has a different expression
from (6), the estimation performance will be unchanged since
they have absolutely identical values.

IV. SIMULATION RESULTS

The validity of the proposed CAF based algorithm is verified
in terms of the probability of failure estimation (POFE) defined
as Pr {ε̂ ̸= ε}. Two typical IEEE 802.11e OFDMA parameter-
sets, (N = 128; Ng = 16) and (N = 512; Ng = 64), are
adopted. A full acquisition range [−N/2, N/2) is considered.
For each SNR, at least 106 independent trials are performed in
which the IFOs are randomly generated within [−N/2, N/2).
In particular, the POFEs of the DOFDM, S&C and ML are
simulated for comparison, where S&C and ML require two
consecutive OFDM training symbol, and the others require
only one OFDM training symbol.

From POFEs for AWGN channels as shown in Fig. 3,
we can see that the proposed algorithm outperforms the
conventional DOFDM, S&C and ML approaches. Moreover,
the performance improvement is more obvious for the CAF
based algorithm than the other approaches when the length of
OFDM training symbol increases.

Fig. 4 compares the performance of different algorithms
for frequency-selective fading channels. Without loss of gen-
erality, COST207 RA model [1] with L = 6 is adopted.
Similar to AWGN channels, the CAF IFO estimation also
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Fig. 4. Performance comparison for COST207 RA channels

outperforms DOFDM, S&C and ML algorithms for frequency-
selective fading channels. Moreover, as shown in Figs. 3-
4, S&C and ML almost have the same performance for
both AWGN and frequency-selective fading channels, while
DOFDM is very sensitive to the frequency selectivity of the
channel. As a one training symbol based algorithm, CAF based
IFO estimation degrades slightly in frequency-selective fading
channels compared with AWGN channels. However, it still
outperforms the S&C and ML with a lower training overhead.
Another observation from Figs. 3-4 is an increase in the length
of FFT (N ) results in a performance improvement for all
candidates. The reason for the performance improvement of
CAF based IFO estimation can be found in Sec. III-C.

Further, Fig. 5 shows the POFEs of CAF IFO estimation for
different frequency-selective fading channel models. Three 6-
path channel models with different lengths of CIR are adopted:
COST207 TU (L = 51), ITU VA (L = 26) and COST207
RA (L = 6). It is observed that a decrease in the sparsity of
frequency-selective fading channel improves the performance
of the CAF based algorithm. The reason is, in sparse channels,
the accuracy of IFO is reduced since more taps that only
contain noise term are involved in IFO metric. Hence, if the
knowledge of channel length and position of channel taps are
available, they can be utilized to improve the performance of
the IFO estimation; this will be considered as future work.

V. CONCLUSIONS

In this paper, we focus on the IFO estimation in OFDM
systems over frequency-selective fading channels using only
one training symbol. By analyzing the energy distribution
of the CAF, an energy-detection based estimation metric is
constructed. Specifically, an OFDM symbol with constant
amplitude and random phase in frequency domain is adopted
as the training symbol. Its AF and CAF are verified to be
valid approximations to the ideal AF and CAF, respectively.
As a result, a high-accuracy and full-range IFO estimator
is obtained in the presence of frequency-selective fading.
Furthermore, the computational complexity of the proposed
CAF based IFO estimator can be kept at a relatively low
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Fig. 5. Performance comparison for different frequency-selective fading
channels (N = 512 )

level by utilizing the CAF expression in terms of time-domain
signals.
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