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Abstract—The majority studies on resource allocation are
based on continuous power allocation. However, the transmit
power can be assumed as a finite set of discrete power levels only,
especially for practical digital cellular systems. By simply round-
ing up or down, the conventional continuous power allocation
algorithm will not suffice. In this paper, via transmitting signal
on discrete power levels, multi-cell power allocation is modeled
as a combinatorial optimization problem, which proved to be
NP-hard. Ant colony optimization (ACO) is applied to get near-
optimal solution of the problem. In particular, a multiple power
level based searching graph is designed, and conventional ACO
is improved that ant colonies in each cell cooperate to maximize
system throughput. Simulation results indicate that with only 4
power levels, the proposed algorithm can achieve a significant
rate gain. And the throughput improvement increases to roughly
12% and 33% compared with binary power allocation and equal
power allocation

I. INTRODUCTION

Due to its potential in supporting high data rate services
over frequency selective fading channels, orthogonal frequency
division multiplexing (OFDM) based multiple access has been
accepted as the downlink access technology of 3rd generation
partnership project (3GPP) long term evolution (LTE) and
LTE-Advanced standard [1]. However, cochannel interference
from neighboring cells degrades the performance of multi-
cell OFDM systems significantly. Therefore, it is important
to develop a good radio resource allocation scheme which
reduces inter-cell interference (ICI) and improves the system
performance effectively.

An improved iterative water-filling resource allocation al-
gorithm for multi-cell scenarios is proposed in [2], which
maximizes the weighted system sum-rate while subject to
the power constraints of each base station. In [3], multi-cell
resource allocation is modeled as a noncooperative power
allocation game (NPAG), and an iterative algorithm is pro-
posed to reach Nash equilibrium (NE). In [4], a resource
allocation algorithm combined with interference coordination
is proposed. However, most of the conventional algorithms,
like the previous mentioned, are proposed based on continuous
power allocation. Actually, the transmit power can be assumed
as a finite set of discrete power levels only, especially for
practical digital cellular systems. And it has been proved in
[5] that by simply rounding up or down, the convergence and
uniqueness of the continuous power algorithm are lost.

In [6], Anders Gjendemsø proposes a binary power al-
location (BPA) algorithm for maximizing the throughput of
multi-cell systems. BPA mitigates ICI by deciding whether
the subchannel to be silent or transmitting at maximum
power. It is shown that by adopting binary power levels, the
search for distributed algorithms becomes more manageable
and the affection on system performance is minor. In [7],
Honghai Zhang maximizes the weighted sum-rate in multi-cell
networks through discrete power allocation and coordinated
scheduling. He also noted that, for practical systems, discrete
power allocation offers two main benefits over conventional
continuous power allocation: (i) the transmitter design is
much simplified and more importantly (ii) the overhead of
information exchange among network nodes can be reduced.
However, discrete power allocation for multi-cell systems is
an NP-hard combinational optimization problem [7], difficult
to obtain its optimal solution in polynomial time.

Metaheuristic algorithm is an efficient method to obtain
near-optimal solutions of NP-hard problems. Up to now,
some works have been done on resource allocation based on
metaheuristic algorithm. In [8], a Genetic Algorithm (GA)
based scheme is proposed to minimize the overall transmit
power with the QoS constraints of users. In [9], both GA and
Particle Swarm Optimization (PSO) are applied for subcarrier
allocation while the bit allocation part is based on water-filling
algorithm. Ant colony optimization (ACO) is adopted to solve
resource allocation problem in [10], where a multiple edges
ACO graphic is developed to allocated subchannels and bit
jointly. However, the schemes discussed above are all intend
for single cell system, which can not be applied to multi-
cell environment directly. A two level ACO based multi-cell
subchannel allocation scheme is proposed in [11]. However,
the scheme didn’t consider appropriate power allocation by
using an equal power allocation.

In this paper, ACO is applied to solve discrete power
allocation problem for multi-cell OFDM systems. First, a
multiple power level based searching graph is designed. Then,
as the multi-cell discrete power allocation problem is much
more complex than typical NP-hard problems, conventional
ACO algorithm is improved that ant colonies in each cell
cooperate with each other to maximize the system throughput.
Finally, system level simulation is performed to verify the



effectiveness and feasibility of the proposed scheme.
The remainder of this paper is organized as follows. Section

II shows the system model and formulates an optimal system
throughput problem. The proposed algorithm based on ACO
is described in details in section III. Section IV presents the
simulation results and compares the performance with the
existing methods. Finally, conclusion are given in section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a downlink multi-cell OFDM system consisting
of I (I ≥ 2) cochannel cells, where M subchannels are
fully reused in the system. K users are randomly distributed
in each cell. Base stations and users are equipped with one
receive and one transmit antenna, respectively. Assumed that
each subchannel of a cell can be assigned to only one user,
and the system has knowledge of the instantaneous channel
state information (CSI) for all users. The continuous transmit
power domain for each subchannel is quantized into L (L ≥ 2)
discrete power levels 0 = ε1 < ε2 < · · · < εL = εmax, where
εmax is the maximum transmit power of the subchannel. An
increase of L leads to the fact that the discrete domain is
much closer to a continuous one, but meanwhile computational
complexity increases as well.

Assume user k is connected to the ith cell on subchannel
m. Denote si

m,k is the complex symbol transmitted from the
base station to user k. When the ICI from adjacent cells is
considered, the received signal of user k can be given by:

yi
m,k =

√
P i

mHi
m,ksi

m,k +
I∑

j 6=i

√
P j

mHj
m,ksj

m,k + ni
m,k, (1)

where P i
m is the transmit power on subchannel m of cell i,

which is restrict to a discrete set of values S = {ε1, ε2, · ·
·, εL}. Hi

m,k is the complex channel response between cell
i and user k on subchannel m. ni

m,k is the additive white
Gaussian noise with noise power N0. We indicate with Pm =
[P 1

m, P 2
m, · · ·, P I

m] the power strategy of subchannel m of I
cochannel cells, the received signal to interference plus noise
ratio (SINR) of user k on subchannel m of cell i can be written
as a function of Pm given by (2).
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According to Shannon theorem, the achievable rate on
subchannel m for user k can be expressed as:
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where W is the system bandwidth, Γ is the SINR gap. For
multilevel quadrature amplitude modulation (MQAM), Γ is a
constant related to the required bit error rate (BER) [12]:

Γ = − ln(5BERreq)/1.5 (4)

For simplicity, we assume that all the subchannels have
been assigned to certain users. Define the system throughput

as the sum transmission rate of the users in the considered
system. The discrete power allocation optimization problem
of maximizing system throughput can be formulated as:
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where Pmax is maximum transmit power of the BSs. The com-
binatorial optimization problem (5) is an NP-hard problem [7],
[13]. This is because even the sum-rate maximization problem
with binary power allocation for a given user assignment is
proved to be NP-hard in the proof of Theorem 1 in [13].
Exhaustive searching is a possible method to obtain its optimal
solutions, but it is not able to be implemented in practical
systems due to intensive computing. Therefore, ACO is used
in this paper to provide solutions in real-time.

III. ACO-BASED SOLUTION

As one of metaheuristic algorithms, ACO is first proposed
by Marco Dorigo to solve traveling salesman problem (TSP)
[14], and became well-known due to is advantage in solving
combinatorial optimization problems. It is inspired by the
highly collaborative behavior of ants finding the shortest path
between food and nest. Natural ants are abstracted as basic
computational agents with simple capabilities, and their main
task is to find the best complete path. Evaporable pheromone
is released on the path that the artificial ant has passed, and the
released amount is proportional to the quality of the solution
that the path indicates, thus a positive feedback mechanism
can be formed. As a result, after several times of iteration, all
the ants gradually converge to one suboptimal or sometimes
optimal path for the target problem.

Used in different NP-hard problems, ACO has been proved
qualified with excellent robustness and easy to be applied in
realistic environment. The first ACO algorithm is ant system
(AS) [14], and several improved algorithm has been proposed
after its inspiration. In this paper, ant colony system (ACS)
[15], a more efficient ACO algorithm, is applied.

A. Searching Graph Construction

First of all, the searching graph of the discrete power
allocation problem should be designed for the ants to move
from node to node to construct solutions. In this paper, each
cell creates a searching graph for ants to allocate power for
the subchannels. Since multi-cell power allocation problem
is more complex than typical NP-hard problem, like TSP,
the conventional ACO is improved that ant colonies of each
cell cooperate with each other to maximize the whole system
throughput. The searching graph of each cell is shown in
Fig. 1 (a), which is a two-dimensional graph consists of
L × M nodes. The Column denotes M subchannels, and



the row denotes L power levels, thus each node represents
a subchannel and power level pair. Virtual nest and food are
located on both sides of the graph. Artificial ants start out
from the nest and move from one column to another to select
power level for the subchannels until food resource is found.
The size of the nodes represents for the pheromone amount,
and at the beginning of the algorithm, the pheromone amount
for all the nodes is initialized to an equal const value τ0.
By continually changing the size of the nodes while ants
moving, ACO is able to obtain satisfied feasible solutions.
Fig. 1 (b) shows the searching graph after several times of
iterations, which also give an example of one complete path:
P i

1 = ε3, P
i
2 = ε2, P

i
3 = εL, · · ·, P i

M−1 = ε1, P
i
M = ε3.

B. Heuristic Information Calculation

Pheromone is not the only factor that the ants depend on to
construct solutions of the target problem, heuristic information
also plays an important role when the ants chose the next
step. Similar to the visibility of ant in TSP, this information
measures the quality of nodes that can be added to the current
partial solution. The bigger the heuristic information of the
node is, the more possibly to be selected. Power allocation
strategies of adjacent cells influence with each other, high
power level produces high data rate of the specific cell, but
causes serious interference to neighboring cells. Hence, to
attract the ants finding global optimal solutions, the perfor-
mance of cochannel cells is also taken into consideration of
the calculation of the heuristic information. We define:

Rl,m =
I∑

j=1

rj
m,k(Pm|P i

m = εl), (6)

where the power level of subchannel m of the concerned cell
i is l, and for other cells the power level of subchannel m
is depend on the best-so-far solution, whose initial value is a
random solution satisfied power constraint. Furthermore, Rl,m

is normalized and define the heuristic information ηl,m for
node (l, m) as:

ηl,m =
Rl,m

L∑
k=1

Rk,m

. (7)

C. Migration of Ants

At each iteration, an artificial ant is dispatched from the
nest to find possible solution for the cell, and the computation
of each cell runs independently. The ants choose power
level for the subchannel by traveling in the searching graph
according to a pseudorandom proportional rule which offers a
tradeoff between “exploitation” and “biased exploration” [15].
Assuming there is an ant lies on column m, the rule can be
described as:

l=
{

arg maxk∈[1,2,···,L]([τk,m]α[ηk,m]β),
J,

if q ≤ q0

else , (8)

where q is a random number uniformly distributed in [0, 1], q0

is a parameter satisfying 0 ≤ q0 ≤ 1, α and β are parameters
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Fig. 1. (a) The searching graph of each cell at the beginning of the algorithm;
(b) The searching graph of each cell after several times of iteration.

determine the relative importance between pheromone infor-
mation and heuristic information. When q ≤ q0, exploitation
is performed that the current best power level is selected,
otherwise, biased exploration is applied and we choose the
power level J based on roulette wheel selection (RWS) using
the following probability distribution of the candidate nodes:

p(l, m) =
[τl,m]α[ηl,m]β

L∑
k=1

[τk,m]α[ηk,m]β
,∀l, (9)

where p(l, m) represents for the possibility of node (l, m) to
be selected as the next step.

One thing improtant to mention, during the execution of
the migration, if the power summation of the subchannels that
have been allocated unexpectedly exceeds power constraint
of the base station, the ant stops moving any more, and is
eliminated immediately. Another ant is dispatched form the
nest to replace the eliminated one and restart allocating power
for all subchannels until a complete path is finished.

D. Pheromone Updating

The pheromone updating process includes pheromone evap-
oration and release. Once the ants move a step, i.e. select a
power level for a subchannel, the local pheromone updating is
conducted on the corresponding node based on the following
formula:

τl,m = (1− ξ)τl,m + ξτ0, (10)

where ξ is the local evaporation rate. Local pheromone up-
dating can reduce the pheromone amount and improve the
possibility of other nodes to be select by the ants. In this way,
the algorithm will not slide into stagnation, which means the
ants will not select the same path, and this is effective for the
situation when power exceeds constraint.

Global pheromone updating is based on the information
exchange between ant colonies of different cells. Once all the



ant colonies of different cells finished the power allocation for
their subchannels, new power allocation strategy is gathered
from different cells and compared with the best-so-far solution.
The one which can provide larger system throughput will
be the new best-so-far solution. And the global pheromone
updating is applied only on the nodes indicated by the best-
so-far solution based on the following formula:

τl,m = (1− ρ)τl,m + k0ρR, (11)

where ρ is the global evaporation rate, k0 is a const parameter
to adjust the amount of pheromone to be released. We can
see from (11), the better the solution is, the more pheromone
is gained on the nodes of path. Furthermore, new best-so-far
solution is passed on to each colony.

After the construction of global pheromone updating, one
time of iteration is finished. If the condition of iteration ends
is satisfied, for instance reaching the pre-determined maximal
iterative time, the algorithm will be finished and the power
is allocated based on the best-so-far solution. The proposed
ACO-based algorithm can be summarized in Fig. 2, where t
denotes the iterative times.

Ending of iteration?

Exceeding power 

constraint? 

End

t=t+1

Dispatch an ant from the nest

Choose the next node for the ant according 

to the pseudorandom proportional rule

Perform local pheromone 

updating according to (10)

Renew best-so-far solution, and perform 

global pheromone updating according to (11)

Finish of a 

complete  path?

Y

N

N

Y

Y

N

Run 

independently  

in each  cell  

Calculate heuristic information 

 Initialization

Fig. 2. Flowchart of the ACO-based algorithm.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, Monte Carlo simulation have been carried
out to illustrate the performance of the proposed algorithm.
We set up a seven-cell simulation scenario, where six cells
around a central cell with omnidirectional antennas with the
same cell radius. To reduce the simulation complexiy, assume
that 10 subchannels are available for each cell. A simple
fair subchannel allocation scheme is deployed, thus each
user is allocated same number of subchannels. More detailed
simulation parameters are listed in Table I. The maximize

TABLE I
SIMULATION PARAMETERS

Parameters Value
Cell radius 500m

Subchannel number 10
Total BS TX power 46dBm
Carrier frequency 2GHz

Bandwidth 10MHz
Path loss (dB) L=128.1+37.6log10(R), R/km

Shadowing standard deviation 8dB
Shadowing correlation distance 50m

Fast fading model SCME
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Fig. 3. System throughput of three different schemes with L = 4.

iterative times is set T = 100. For the ACO parameters, it is
found the following parameters producing good performance
in a series of problems [16]: τ0 = 0.5, α = 1, β = 3, q0 = 0.9,
ξ = ρ = 0.1.

In order to make comparison with existing algorithms, we
also give out the simulation results of BPA given by greedy
approach in [6], and equal power allocation (EPA) which the
transmit power on every subchannel is equal.

In Fig. 3, the throughput of three schemes is shown as
a function of the number of users in each cell. For ACO,
the power level number is 4. We can come to the conclusion
that ACO achieves the best performance, and the throughput
improvement increases to roughly 12% and 33% compared
with BPA and EPA. Due to the limitation of binary power
levels and greedy approach, which just chooses current best
solution, the throughput of BPA is lower than ACO. In ad-
dition, the performance gap between BPA and ACO becomes
large as the number of users increases, which can be concluded
that the proposed algorithm employs multi-user and multi-cell
diversity well.

In Fig. 4 (a), we compare the performance of ACO for
different number of power levels. It can be concluded that
increasing power level number from 2 to 4 gives noticeable
system throughput gain, but further increasing the number of
transmit power levels beyond 4 only gives limited performance
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Fig. 5. Utilization of power of three different schemes with L = 4.

improvement. Fig. 4 (b) further illustrates one time of search-
ing progress of maximum system throughput with the iterative
times for different power level number cases. It is shown that
for all cases, the throughput improves significantly after 4-6
times of iteration, and after several times of searching, the
simulation is close to convergence. Actually, we do not need
wait for full convergence in practical, only few iterations to
reach acceptable results is enough. L = 4 is a suggested power
level number, this is because it can reach good enough solu-
tion meanwhile the needed iterative time and computational
dimensions is relatively low.

We also compare the utilization of power of different
schemes. The ratio of average transmit power over BSs to
the maximum power each BS can provide, which is denoted
as power usage rate, is shown as a function of the number of
users in Fig. 5. It can be seen clearly that EPA uses all the
power provided. and BPA only consumes about half of the
power constraint. Compared to BPA, ACO consumes more
power, however the increased power usage rate is small, only
about 10%. It is worth to sacrifice this part of transmit power
to gain the system throughput improvement.

V. CONCLUSION

The application of ACO to the power allocation problem
in multi-cell OFDM systems with discrete power levels is
studied in this paper. The objective is to maximize system
throughput while subject to per-base-station power constraints.
Simulation results show that the proposed algorithm can
improve system throughput significantly compared with BPA
and EPA, while the power usage rate is acceptable. Moreover,
simulation results also indicate that with only 4 power levels,
the proposed algorithm is able to achieve good enough result.
In the further work, we’d like to focus on joint subchannel
and power allocation problem in multi-cell scenarios, as well
as further enhancing performance and reducing computational
complexity as the dimension of the problem increases.
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