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Abstract—In this paper, a novel optimization objective namely
weighted sum rate is proposed for beamformer design in single
group multicast systems. As an upper bound and special case
of maximizing minimum rate, it can overcome previous disad-
vantages of computation complexity and sensitivity to channel
state when the weights are chosen properly. Although the cor-
responding optimization problem is nonconvex, some properties
of the optimal solution and closed-form solutions under some
usual special cases are derived. In addition, an iterative algorithm
with low computation complexity for general case is proposed.
Simulation results show that the beamformer obtained by the
iterative algorithm not only improves the minimum rate and
average rate, but also gets better fairness and overall performance
compared with previous schemes.

Index Terms—single group multicast, beamforming, weighted
sum rate.

I. INTRODUCTION

Modern mobile communication systems, such as LTE, LTE-
A and WiMAX, will support multicast. Recently there appear
some researches on beamformer design for multi-antenna
multicast systems [1]–[5], since multi-antenna transmission
can improve the spectral efficiency greatly.

Different data is transmitted for individual user in multiuser
unicast systems, so beamformers are designed respectively to
improve each user’s receiving performance and eliminate the
inference among users. While same data is transmitted in sin-
gle group multicast systems, all the users will share a common
beamformer, which should guarantee all the users’ receiving
performance, particularly the users with poor channels, thus
the design objective must be fair for all the users.

By now, maximizing minimum rate is the main concern for
beamformer design in a single-group multicast system [2]–[4].
While maximizing minimum rate intends to provide Quality
of Service (QoS) assurance for each user, so the overall
performance will be limited by the worst user. However, in
some cases, a poor user may reduce overall performance
tremendously, especially when the channel of the worst user
is uncorrelated with others, leading to that the system works
at an extremely low rate. In other words, it may reduce the
performance of those users who have good channels and
deserve better service. But the poor users should not be
neglected simply, hence all the users should be considered in
different degrees. Meanwhile, since maximizing minimum rate
is a NP-hard problem [2], it is difficult to obtain the optimal
solution with acceptable complexity, except for some special

case [4] or upper bound after relaxation [5]. Otherwise, only
suboptimal solution could be obtained through semidefinite
relaxation (SDR) [2] or successive orthogonalization [3].

In this paper, a new optimization objective namely maxi-
mizing weighted sum rate is proposed. It provides different
priority for each user according to the channel quality. Com-
pared with maximizing minimum rate, maximizing weighted
sum rate shifts the focus from the worst user to the worse user
group. In addition, maximizing minimum rate can be regarded
as a lower bound and a special case of maximizing weighted
sum rate. This objective can guarantee minimum rate, average
rate and fairness when the weights in the objective are chosen
properly. In this paper, the weights are chosen inversely
proportional to the channel quality such that the worse the
channel quality is, the higher the weight is.

The obtained original optimization problem is nonconvex,
some properties of the optimal solution and closed-form
solutions under some usual special cases are derived. Further-
more, a low-complexity iterative algorithm for general case is
proposed, whose initial value is the solution of maximizing
weighted SNR.

Notation: Uppercase and lowercase boldface letters denote
matrices and vectors respectively, AT and AH denote the
transpose and conjugate transpose of A, ‖x‖ denotes the
Euclidean norm of x, E{·} is the expectation of a random
variable, 0M ,1M and IM denote the M × 1 all zeros vector,
M×1 all ones vector and M×M identity matrix, respectively.

II. PROBLEM STATEMENT

Consider a base station with M antennas to transmit com-
mon data to N single-antenna users. Transmitted symbol is
s ∈ C, subjected to E{|s|2} = P , where P is the maximum
transmit power. Denote w ∈ C

M×1 the beamformer applied
to the M transmit antennas, which fulfills the transmit power
constraint ‖w‖2 ≤ 1.

All the channels are assumed to be i.i.d. Rayleigh, so the
signal received by user i can be expressed as

yi = hH
i ws+ zi (1)

where hi ∈ C
M×1 is channel vector of user i distributed as

CN (0, IM ) that is constant for several frames before changing,
zi is additive noise of user i distributed as CN (0, σ2

i ). The
transmitter is assumed to accurately know the instantaneous
channel state information of all users.



The instantaneous rate of user i is

Ri = log2

(
1 +

P |hH
i w|2
σ2
i

)
= log2

(
1 + wHQiw

)
(2)

where Qi = (PhihH
i )/σ

2
i .

When maximizing weighted sum rate is chosen as the
optimization objective, the problem can be modeled as{

min
w

f(w) = −∑N
i=1 αi log2

(
1 +wHQiw

)
s.t. ‖w‖2 ≤ 1

(3)

where αi is the weight of user i satisfying
∑N

i=1 αi = 1. In
this paper and simulation, we choose

αi =
σ2
i /‖hi‖2∑N

j=1

(
σ2
j /‖hj‖2

) (4)

which is determined by the channel state, the worse the
channel is, the higher the corresponding weight is.

Remark 1: Because min
i=1,··· ,N

Ri ≤ ∑N
i=1 αiRi, weighted

sum rate can be regarded as an upper bound of the minimum
rate, i.e., the objective in [2]. Furthermore, minimum rate is a
special case of weighted sum rate with weight (1, 0, · · · , 0).

Remark 2: Maximizing average SNR was discussed in [1].
Similarly, when the original problem of maximizing weighted
sum rate degenerates to maximizing weighted SNR, optimiza-
tion objective is

N∑
i=1

αiw
HQiw = wH

(
N∑
i=1

αiQi

)
w � wHQw (5)

To achieve the maximum weighted SNR, the optimal beam-
former is the normalized eigenvector corresponding to the
maximum eigenvalue of Q, which is a kind of simplification.

III. THEORETICAL ANALYSIS

A. Properties of the optimal solution

In (3), the domain of f(w) is C
M×1, while f(w) is

continuous and twice differentiable, whose Hessian is

∇2
wf(w) = −

N∑
i=1

αi

(1 +wHQiw)
2Qi (6)

Because ∇2
wf(w) is negative semidefinite, objective func-

tion is concave. In addition, the feasible set is convex. Thus
the original problem (3) is not convex [6].

Some properties of the optimal solution are derived.

Theorem 1. The optimal beamformer of maximizing weighted
sum rate must lie in the subspace spanned by each user’s
channel vector.

Proof : Assume the optimal beamformer of maximizing
weighted sum rate scheme does not lie within the subspace
spanned by each user’s channel vectors, which means wopt

can be expressed as wopt =
√
γw1 +

√
1− γw2, 0 ≤

γ < 1 where ‖wopt‖ = ‖w1‖ = ‖w2‖, and w1 ∈
span(h1, · · · ,hN), w2 ∈ null(h1, · · · ,hN). As defined in (3),

It is knowable that f(wopt) > f(w1), which implies wopt is
not optimal, contradicting the assumption. �
Theorem 2. The optimal beamformer should satisfy ‖w‖2 =
1, which means the base station works with maximum power.

B. Closed-form solutions under some usual special cases

Introduce the Lagrange function L(w, λ) of problem (3) ,
where λ is Lagrange multiplier. We obtain the Karush-Kuhn-
Tucker (KKT) conditions of (3){

‖w‖2 ≤ 1, λ ≥ 0, λ(‖w‖2 − 1) = 0

∇wL(w, λ) = 0
(7)

where

∇wL(w, λ) =

[
λIM −

N∑
i=1

αi

1 +wHQiw
Qi

]
w = 0 (8)

It implies that w is the eigenvector of a linear combination
of matrix Q1, · · · ,QN . Since the original problem is noncon-
vex, some special cases are considered.

1) All the channels are poor: In this case, wHQiw is much
less than 1. Thus (8) can be simplified as

∇wL(w, λ) ≈
[
λIM −

N∑
i=1

αiQi

]
w = 0 (9)

Hence w should be the normalized eigenvector corresponding
to the maximum eigenvalue of matrix

∑N
i=1 αiQi, which is

equivalent to maximizing weighted SNR as (5).
2) Users on orthogonal directions with high SNR: In

practical system, users feedback channels through codewords,
which includes numerous orthogonal codewords, thus this
is a usual case. Assume v1, · · · , vK is a set of normal
orthogonal basis of span(h1, · · · , hN ). According to Theorem
1, w ∈ span(h1, h2, · · · , hN ), thus w can be expressed as

w =
K∑

k=1

akvk (10)

In this case, we divide them into K groups. Assume there
are Nk users on k-th direction, whose normal orthogonal basis
is vk. Denote original index i by (k, j), which means j-th user
on k-th direction.

For k = 1, · · · ,K, j = 1, · · · , Nk, we have

h(k,j) = ‖h(k,j)‖ejγ(k,j)vk (11)

Substituting (10) and (11) to (3), original problem becomes⎧⎨
⎩min

w
−∑K

k=1

[
α(k,j)

∑Nk

j=1 log2

(
1+

P‖h(k,j)‖2

σ2
(k,j)

|ai|2
)]

s.t.
∑K

k=1 |ak|2 ≤ 1
(12)

Denote c = (c1, · · · , cK)T = (|a1|2, · · · , |aK |2)T, problem
(12) can be converted to following equivalent form⎧⎪⎪⎨

⎪⎪⎩
min
c

−∑K
k=1

[
α(k,j)

∑Nk

j=1 log2

(
1+

P‖h(k,j)‖2

σ2
(k,j)

ck

)]
s.t.

∑K
k=1 ck ≤ 1

ck ≥ 0, i = 1, · · · ,K
(13)



Thus the objective function is converted to a logarithmic
linear function, which is a convex optimization problem. The
Lagrange function of problem (13) is

L(c, λ,μμμ) =−
K∑

k=1

⎡
⎣α(k,j)

Nk∑
j=1

log2

(
1+

P‖h(k,j)‖2
σ2
(k,j)

ck

)⎤
⎦

+ λ
(
1T
Kc− 1

) −μμμTc (14)

where λ and μμμ are Lagrange multipliers.
We obtain the KKT conditions of (13)⎧⎪⎨

⎪⎩
1T
Kc ≤ 1, λ ≥ 0, λ(1T

Kc− 1) = 0

ck ≥ 0, μk ≥ 0, μkck = 0, k = 1, · · · ,K
∇ckL(c, λ,μμμ) = 0, k = 1, · · · ,K

(15)

Thus we have

∇ckL(c, λ,μμμ) = −
Nk∑
j=1

α(k,j)

σ2
(k,j)

P‖h(k,j)‖2 + ck

+ λ− μk = 0 (16)

By noting that μk acts as a slack variable, we get⎛
⎜⎝ Nk∑

j=1

α(k,j)

σ2
(k,j)

P‖h(k,j)‖2 + ck

− λ

⎞
⎟⎠ ck = 0, k = 1, · · · ,K (17)

With high SNR (
σ2
(k,j)

P‖h(k,j)‖2 is negligible) and power con-

straint Theorem 2, we get ck ≈ ∑Nk

j=1 α(k,j), k = 1, · · · ,K,
which implies that ck is sum of the weights on k-th direction.
Because ck = |ak|2, we obtain

wopt =
K∑

k=1

⎛
⎝

√√√√ Nk∑
j=1

α(k,j)e
jθkvk

⎞
⎠ (18)

where θ1, · · · , θK is any real number in [0, 2π].
3) Channels are pairwise orthogonal with any SNR:

In this case, h1/‖h1‖, · · · , hN/‖hN‖ is a set of standard
orthogonal basis of span(h1, · · · , hN ), and the dimension of
span(h1, · · · , hN ) is K = N . Thus (10) can be expressed as

w =
K∑

k=1

ak
hk

‖hk‖ (19)

Then (17) can be written as(
λ− αk‖hk‖2

σ2
k/P + ck‖hk‖2

)
ck = 0, k = 1, · · · ,K (20)

Following theorem holds:

Theorem 3. If channel vectors are pairwise orthogonal, then
w satisfies ck 	= 0 for k = 1, · · · ,K.

Proof : For convenience and without loss of generality, we
assume wopt satisfies hH

1 wopt = 0, hence wopt can be
expressed as wopt =

∑K
k=2 bkhk. Assume another beamform-

ing vector w′ can be written as w′ = (
√
βwopt/‖wopt‖ +√

1− βh1/‖h1‖)‖wopt‖, where 0 ≤ β ≤ 1. Then we discuss

the value of β when w′ is optimal. If β can never be 1, the
assumption is false. Regard f(w′) as a function of variable
β, which is continuous and differentiable when 0 ≤ β ≤ 1.
In addition, d

dβ f(w
′) increases continuously as β increases,

and d
dβ f(w

′)|β=0 < 0, d
dβ f(w

′)|β=1 > 0, i.e., the derivative
changes from negative to positive. It implies that the function
value first descends then increases, minimum point is in the
interval (0, 1). Thus β = 1 can never be satisfied. �

According to Theorem 3, (20) can be simplified as

λ− αk‖hk‖2
σ2
k/P + ck‖hk‖2 = 0, k = 1, · · · ,K (21)

Considering the power constraint and ck ≥ 0, we have ck =
αk for k = 1, · · · ,K and

wopt =

K∑
k=1

(√
αke

jθk
hk

‖hk‖
)

(22)

where θ1, · · · , θK is any real number in [0, 2π].

IV. ITERATIVE ALGORITHM

For general case of problem (3), we propose following
iterative algorithm based on modified gradient descent method:

1) Initialization: iteration counter is k = 1, initial beam-
former w1 is set as the optimal solution of maximizing
weighted SNR, i.e., the normalized eigenvector corre-
sponding to the maximum eigenvalue of

∑N
i=1 αiQi in

(5);
2) Determine descent direction: compute the gradient of

f(wk) at wk. Set the descent direction of k-th iteration
as the negative gradient, i.e.

Δwk = −∇f(wk) =
N∑
i=1

(
αi

Qiwk

1 +wH
k Qiwk

)
(23)

3) Determine the step size ηk of k-th iteration by back-
tracking line search in [6]: initialize ηk with ηk = 1, if
f(wk + ηkΔwk) > f(wk) + ρηk∇f(wk)

TΔwk, update
ηk as ηk := ξηk until above inequality is violated, where
ρ ∈ (0, 0.5) and ξ ∈ (0, 1) are constant values, then
regard ηk as the step size.

4) Update: wk+1 = wk + ηkΔwk, and normalize it, i.e.,
wk+1 := wk+1/‖wk+1‖;

5) Judgement: If the terminal condition∣∣∣∣f(wk+1)− f(wk)

f(wk)

∣∣∣∣ < ε

is fulfilled, then the iteration stops, where ε is a small
positive constant value; otherwise the algorithm switches
to step 2 to continue iteration and k := k + 1.

V. SIMULATION RESULTS

In this section, the performance of the proposed iterative
algorithm is compared with previous schemes: open-loop
transmission (i.e., w is 1√

M
1M ), SDR beamforming [2],

successive beamforming [3] and maximizing average SNR



scheme [1], with simulation parameters as follows: 4 antennas
at transmitter, P/σ2

i for all i = 1, · · · , N is set to be 10dB.
Minimum rate with respect to the number of users is shown

in Fig. 1. The proposed scheme in this paper shows excellent
performance compared to other schemes. That is, although
the proposed scheme does not guarantee the worst user, the
selection of weight tends to focus on the worse users.
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Fig. 1. Minimum rate versus the number of users

Fig. 2 shows the average rate of different schemes. The
proposed scheme yields best average rate among all the
schemes.
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Fig. 2. Average rate versus the number of users

The cumulative distribution functions of rate with 10 users
are shown in Fig. 3. The proposed scheme improves the overall
rate remarkably compared to previous schemes except the
maximizing average SNR scheme. Although the maximizing
average SNR scheme overcomes the proposed scheme with
high rate, users with poor channels may be neglected, leading

to many users with extremely low rate. It implies that, the
proposed scheme can guarantee the overall performance as
well as the fairness.
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Fig. 3. Cumulative distribution functions of rate with 10 users

Fig. 4 shows the fairness, which is defined by fairness =
(
∑N

i=1 Ri)
2/(N

∑N
i=1 R

2
i ) proposed in [7]. The proposed

scheme is fairer than others, especially with a large number
of users.
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Fig. 4. Fairness versus the number of users

VI. CONCLUSION

In this paper, maximizing weighted sum rate is proposed for
beamformer design in single group multicast systems. It can
provide performance gain compared with previous schemes
because all the user are considered with different priority.
An intuitional and satisfactory weight is chosen in this paper.
Future work can focus on finding more suitable weights, and
the theoretical relation between maximizing weighted sum rate
and maximizing minimum rate should be discussed deeper.
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