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Abstract—A significant challenge of cognitive radio (CR) is to
perform wideband spectrum sensing in a fading environment.
In this paper, a novel multi-rate sub-Nyquist spectrum detection
(MSSD) system is introduced for cooperative wideband spectrum
sensing in a distributed CR network. Using only a few number
of sub-Nyquist samples, MSSD is able to sense the wideband
spectrum without the full spectrum recovery. Specifically,given
the low spectrum occupancy, sub-Nyquist sampling is performed
in each sampling channel and a test statistic is formed by using
sub-Nyquist samples from multiple sampling channels. In order
to improve the system detection performance, we propose to use
different sub-Nyquist sampling rates. After that, we analyze the
performance of MSSD over both non-fading and Rayleigh fading
channels. Numerical results show that MSSD can considerably
improve the wideband spectrum sensing performance in a fading
scenario, with a relatively low implementation complexityand a
low computational complexity.

I. I NTRODUCTION

Radio frequency (RF) spectrum is a precious and scarce nat-
ural resource for wireless communication systems. However,
the report published by Federal Communication Commission
(FCC) has shown that most of licensed spectrum is under-
utilized [1]. Recently, CR [2] has emerged as one of the most
promising candidates for improving the spectral utilization
efficiency [3]–[6]. Spectrum sensing is one of the most critical
components in a CR system enabling CR to access the licensed
spectrum when it is not used by primary users (PUs). In
order to exploit more spectrum opportunities, CR requires a
wideband spectrum sensing structure. Meanwhile, due to the
effects of multipath/shadowing fading, cooperative spectrum
sensing has been considered for increasing the reliabilityof
spectrum sensing [7]–[9]. In practice, cooperative wideband
spectrum sensing in a distributed CR network is difficult
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to realize, due to both high implementation/computational
complexity and high financial/energy costs.

Previous work has focused on the implementation of wide-
band spectrum sensing. Tian and Giannakis [10] proposed a
wavelet detection approach. It provides an advantage of flexi-
bility in adapting to a dynamic wideband spectrum. However,
characterizing the wideband spectrum requires an analog-to-
digital converter (ADC) with a high sampling rate, and the
energy cost for both the ADC and the digital signal processor
(DSP) is prohibitive. In [11], [12], Quanet al. presented a
multiband joint detection (MJD) approach for jointly detecting
the wideband spectrum over multiple frequency bands. It
has been shown that MJD performs well under practical
conditions. In [13], a filter-bank system for wideband spectrum
sensing was presented. Nevertheless, it has been identifiedthat
the implementation of a filter-bank system requires a large
number of radio frequency components [14]. As the spectrum
occupancy is low, compressed sensing (CS)-based techniques
were introduced to implement wideband spectrum sensing
by sub-Nyquist sampling [14]–[16]. An implementation issue
of this approach is that a separate compression device is
required in each sampling channel, and the synchronization
of these devices must be addressed. Another problem is that
the full spectrum reconstruction requires a high computational
complexity, which results in a high spectrum sensing overhead.

This paper presents a MSSD system for wideband spectrum
sensing in a distributed CR network. The proposed system can
sense the wideband spectrum by only using a few sub-Nyquist
samples without reconstructing the full spectrum, which leads
to a low implementation/computational complexity. Specifi-
cally, in MSSD, sub-Nyquist sampling is performed in each
sampling channel to wrap the sparse spectrum onto itself.
Spectral energy is calculated by using sub-Nyquist samples
in each sampling channel. A final test statistic is formed by
using energy vectors from all distributed CRs. We then propose
to use different sampling rates to optimize the detection per-
formance. In addition, we analyze the performance of MSSD
over both non-fading and Rayleigh fading channels, and derive
some closed-form bounds for the probabilities of false alarm



and detection. Compared with the existing spectrum sensing
methods, MSSD improves wideband spectrum sensing perfor-
mance, with a lower implementation complexity and a lower
spectrum sensing overhead.

This paper is organized as follows. In Section II, we
introduce the signal model for spectrum sensing. In SectionIII,
we present a novel MSSD system for cooperative wideband
spectrum sensing. Numerical results are presented in Section
IV, with conclusions given in Section V.

II. SIGNAL MODEL

In this paper, we model the spectrum sensing on a frequency
bin n (n = 1, 2, · · · , N − 1) as choosing betweenH0,n

(absence of PU) andH1,n (presence of PU). We test the
following binary hypothesis,

X [n] =

{
Z[n], H0,n

HnS[n] + Z[n], H1,n
(1)

where
−→
X ∈ CN is the discrete Fourier transform of Nyquist

samples,Hn stands for the discrete frequency response be-
tween the PU and the CR,S[n] is the transmitted primary
signal on the frequency binn, andZ[n] is complex additive
white Gaussian noise (AWGN) with zero mean. For simplicity,
in the rest of the paper we assume that the noise variance of
the spectrum is normalized to be 1, i.e.,Z[n] ∼ CN (0, 1).

As an energy detector does not require prior information
and has a low complexity [17], we calculate the signal energy
over an interval ofJ samples by,

Es[n] =

J−1∑

j=0

|Xj [n]|2, n = 0, 1, · · · , N − 1 (2)

whereXj [n] denotesj-th spectral observation. The decision
rule of the energy detection is given by,

H1,n

Es[n] R λn, n = 0, 1, · · · , N − 1 (3)

H0,n

whereλn is a detection threshold for the frequency binn.
Following [18], the signal energy can be modeled by,

Es[n] ∼
{
χ2

2J , H0,n

χ2
2J (2γ[n]), H1,n

(4)

where γ[n] denotes the signal-to-noise ratio (SNR) at the
CR on the frequency binn, and χ2

2J and χ2
2J (2γ[n]) denote

central and non-central chi-square distributions, respectively.
Both distributions have2J degrees of freedom, and the latter
one has a non-central parameter2γ[n]. The probabilities of
false alarm and detection can be obtained by [18],

Pf,n = Pr(Es[n] > λn|H0,n) =
Γ(J, λn2 )

Γ(J)
(5)

Pd,n = Pr(Es[n] > λn|H1,n) = QJ

(√
2γ[n],

√
λn

)
(6)

respectively, whereΓ(a) is the gamma function,Γ(a, x) is the
upper incomplete gamma function, andQJ(a, x) denotes the
generalized Marcum Q-function.
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Fig. 1. Block diagram of multi-rate sub-Nyquist spectrum detection in a
distributed CR network.

III. PROPOSEDSPECTRUM SENSING SCHEME

We assume thatv distributed CRs collaborate for wideband
spectrum sensing. All CRs keep quiet during the spectrum
sensing interval due to the high-layer protocols, e.g., the
medium access control (MAC) layer protocol. In a short
observation time, the spectra viewed by CRs are assumed
to be quasi-stationary. The full spectrum vector, i.e.,

−→
Xj , is

k-sparse (k ≪ N ), which means only the largestk out
of N components are non-neglectable (due to low spectral
occupancy [19]). In a carrier sense, it means that there are
only a few active carriers even though most of them are
allocated to different wireless systems. The sparsity level, i.e.,
k, can be obtained from initialization, e.g., coarse spectrum
scanning [20], and will not be addressed here. In addition, we
assume that the spectral support (a set of frequency bins that
are occupied by PUs) in different CRs is correlated due to
similar radio environment. In this paper, we are interestedin
identifying a w-out-of-v (w ∈ [1, v]) spectral support (inw
or more thanw CRs, the same frequency bin is occupied by
PUs).

A. System Model

In MSSD, as shown in Fig. 1, each CR is equipped with
one wideband filter, one low-rate sampler, and a fast Fourier
transform (FFT) device for calculating signal energy in the
frequency domain. The wideband filters prior to the samplers
remove frequencies outside the spectrum of interest, and are
altered to have the same bandwidth,W . The work procedure
of MSSD can be described as:

1) Fusion centre (FC) distributes different sub-Nyquist
sampling rates to CRs. In an observation timeT , the
number of samples in CRs, i.e.,M1, · · · ,Mv, are set
to bev consecutive primes, whereM i ∼ O(

√
N).

2) CRs perform asynchronous sub-Nyquist samplings (sub-
ject to that the observed spectra within time offset are
quasi-stationary).

3) FFT is used to calculate spectrum
−→
Y i(i ∈ [1, v]).

4) Signal energy, i.e.,
−→
Eia, is calculated over an interval of

J samples in all CRs, by using
−→
Y i.



5) Each CR quantizes signal energy and transmits it to FC.
6) FC fuses received data to form a test statistic, i.e.,Ês.
7) FC chooses a detection threshold,λn, and tests binary

hypothesis for all frequency bins.
8) FC sends the detection results to all distributed CRs.

B. Multi-channel Sub-Nyquist Sampling

In this section, we will analyze the performance of multi-
channel sub-Nyquist sampling. It is well known that the
relationship between the aliased spectrum (due to sub-Nyquist
sampling) and the full spectrum can be represented by (equa-
tion (59) in [21]),

Y ij [m] =
M i

N

∞∑

l=−∞

X i
j[m+ lM i] (7)

where
−→
Y i

j ∈ C
Mi

and
−→
Xi

j ∈ C
N denote sub-Nyquist spectrum

and full spectrum of thej-th observation in the CRi, respec-
tively. M i andN are the number of samples withinT under
the sub-Nyquist rate and the Nyquist rate, respectively.

Without loss of generality, we useΩi andΩia to denote the
spectral support in

−→
Xi

j ∈ C
N and

−→
Y i

j ∈ C
Mi

as,

Ωi = {n1, n2, · · · , nk} ⊂ {0, 1, · · · , N − 1} (8)

Ωia = {m1,m2, · · · ,mk} ⊂ {0, 1, · · · ,M i − 1} (9)

whereΩia andΩi can be related by,

mj = |nj| mod (Mi) , nj ∈ Ωi,mj ∈ Ωia, j ∈ [1, k]. (10)

As k ≪ N and M i ∼ O(
√
N), it can be easily shown

that the probability of signal overlap inY ij [m] is very small.
When only a single signal appears on the frequency binm,
the following equation holds from (7),

Y ij [m] =
M i

N
X i
j [m+ lM i]. (11)

In such a scenario, with the aid of (11), the scaled aliased
spectrum can be approximately modeled by,
√

N

M i
Y ij [m] ∼

{
CN (0, 1), m /∈ Ωia

CN (
√

Mi

N
Hi
nS

i[n], 1), m ∈ Ωia
(12)

whereHi
n denotes the discrete frequency response between

the PU and the CRi, and Si[n] is the primary transmitted

signal that is received by the CRi. Note that
√

N
Mi in (12) is

used to scale the sub-Nyquist spectrum vector so that it has a
similar noise level to the Nyquist case.

The signal energy in the CRi, i.e.,Ei
a[m] =

∑J

j=1

∣∣Y i
j [m]

∣∣2,
can be modeled by using (12),

N

M i
Eia[m]∼

{
χ2

2J , m /∈ Ωia

χ2
2J

(
2M

i

N
γi[n]

)
, m ∈ Ωia

(13)

whereγi[n] denotes SNR at the CRi on the frequency binn.
The signal energy in distributed CRs will then be collected at
FC. A final test statistic, i.e.,̂Es[n], is formed by,

Ês[n]=

v∑

i=1

ciN

M i
Eia[m+lM i], n∈ [0,N),m ∈ [0,M i) (14)

where l denotes all integers within[0, N/M i − 1], and ci is
a scaling coefficient for the CRi. As the noise variance in
distributed CRs is often different, the scaling coefficientci

can be used for noise-balancing when performing data fusion.
We use the following decision rule as,

H1,n

Ês[n] R λn, n = 0, 1, · · · , N − 1. (15)

H0,n

Assume thatΩiM represents a set of mirrored frequencies
(frequencies that are not occupied by PUs, but they appear to
be active due to aliased components from sub-Nyquist sam-
pling), andΩiU represents a set of unaffected and unoccupied
frequencies as,

ΩiM
△

= {n|n=m+lM i, m∈ Ωia, n /∈ Ωi} (16)

ΩiU
△

= {n|n=m+lM i, m /∈ Ωia, n /∈ Ωi}. (17)

Using (13), the test statistic in (14) can be modeled by,

Ês[n] ∼






χ2
2Jv, n ∈ ΩU

χ2
2Jv


 2
N

j=p∑
j=1
ij∈[1,v]

cijM ijγij [n]


 , n ∈ ΩM

χ2
2Jv

(
2
N

i=v∑
i=1

ciM iγi[n]

)
, n ∈ Ω

(18)
where ΩU

△

= ∩vi=1Ω
i
U , ΩM

△

= ∪vi=1Ω
i
M , and p ∈ [1, v]

denotes the number of CRs, which have mirrored frequencies
on n ∈ ΩM . Note that as spectral supports in different CR
nodes are different, this paper is interested in sensing aw-out-
of-v (w ∈ [1, v]) spectral support. For simplicity, we will study
the performance ofw = v, i.e., Ω

△

= ∩vi=1Ω
i. It can be easily

generalized to the case of anyw ∈ [1, v] by replacingv with w
in the non-central parameter. We note that the parameterp is
dependent upon several factors, e.g., the sampling rates inCRs,
and the spectral support. For instance, if sub-Nyquist sampling
rates of all CRs are the same,p will be equal tov. In such a
scenario, it is difficult to distinguish between̂Es[n](n ∈ ΩM )

and Ês[n](n ∈ Ω). However,p can be minimized by using
different sampling rates in different CRs.

C. Multi-rate Sub-Nyquist Spectrum Detection

In this section, we propose to use different sampling rates
in CRs to optimize the detection performance. Firstly, we
consider the case ofk = 1, which means that only one location
n1 ∈ Ω is occupied by the PU, then Lemma 1 will hold.

Lemma 1: If the length of samples in multiple CRs,
M1,M2, ...,Mv, are different prime numbers, and satisfy,

M iM j > N, ∀ i 6= j ∈ [1, v] (19)

then two or more CRs cannot have mirrored frequencies in
the same location ofg ∈ ΩM .

Proof : The length of samples in the CRi andj are assumed
to beM i andM j , respectively. According to (10) and (16),



the mirrored locations that are projected fromn1 ∈ Ω are
given by,

gi= |n1|mod (Mi)+lM
i = n1−hM i+lM i, h 6= l

gj = |n1|mod (Mj)+ ľM
j=n1−ȟM j+ ľM j, ȟ 6= ľ (20)

where integersh andȟ are from the operation of modulo, and
l−h ∈ [−⌈ N

Mi ⌉+1, ⌈ N
Mi ⌉−1], ľ−ȟ ∈ [−⌈ N

Mj ⌉+1, ⌈ N
Mj ⌉−1].

To avoidgi = gj , is equivalent to avoiding(l−h)M i = (ľ−

ȟ)M j , we simply assume thatM i andM j are different primes,
and max(|l − h|) < M j , i.e. ⌈ N

Mi ⌉ − 1 < M j . The condition
M iM j > N will satisfy this. Furthermore, if this holds for
two CRs, the case for more than two CRs also holds.�

Secondly, we find that whenk ≥ 2, the parameterp in
(18) will be bounded byk when conditions in Lemma 1 can
be satisfied. This is because only one CR node can map the
frequencynj ∈ Ω to the mirrored frequencyg ∈ ΩM , and the
number of components inΩ is k.

Theorem 1: In MSSD, if the length of samples withinT in
multiple CRs,M1,M2, ...,Mv, are different prime numbers,
and satisfy,

M iM j > N, ∀ i 6= j ∈ [1, v] (21)

using the decision rule of (15), the probabilities of false alarm
and detection can be bounded by,

Γ(Jv, λn2 )

Γ(Jv)
≤Pf,n ≤ QJv




√√√√√√
2

N

j=k∑

j=1
ij∈[1,v]

cijM ijγij [n],
√
λn


 (22)

Pd,n≥QJv





√√√√ 2

N

v∑

i=1

ciM iγi[n],
√
λn



 (23)

Proof : As above discussions, (22) follows from (15), (18)
and p ≤ k. The inequality in (23) holds because when one
spectral component maps to another spectral component, the
probability of detection will increase.�

It can be seen from (22) and (23) that either more CRs
or a smallerk will lead to a better detection performance.
In addition, by comparison of (6) and (23), we can see that
the probability of detection increases when using either more
sampling channels or higher sampling rates. Given the fact
that if MiMj = b > N (b is constant),Mi + Mj can
be minimized when they are consecutive primes, we choose
M1,M2, ...,Mv to bev consecutive prime numbers for using
the fewest measurements. In such a scenario, the following
approximations can be made,

2
∑v

i=1 c
iM iγi

N
≃ 2M

N

v∑

i=1

γi = ψγv, (24)

2
∑j=k
j=1
ij∈[1,v]

cijM ijγij

N
≃ 2M

N

j=k∑

j=1
ij∈[1,v]

γij = ψγk (25)

whereM is the averageciM i over multiple CRs,ψ △
= 2M

N
,

γv
△
=

∑v

i=1 γ
i, andγk

△
=

∑j=k
j=1
ij∈[1,v]

γij .

D. Performance Over Rayleigh Fading Channels

Since CR nodes are distributed, the fading channels between
the PUs and the CRs are assumed to be independent and
identically distributed (i.i.d.). Considering Rayleigh fading,
the SNR at the CRi follows an exponential distribution.
Therefore,γv andγk follow Gamma distributions given by,

f(γv) =
(γv)

v−1

(γ)vΓ(v)
e−

γv
γ , γv ≥ 0 (26)

f(γk) =
(γk)

k−1

(γ)kΓ(k)
e−

γk
γ , γk ≥ 0 (27)

whereγ denotes local-mean SNR (SNR averaged over a few
tens of wavelength), andf(x) is a probability density function.

In the MSSD system, the average probabilities of false alarm
and detection can be calculated by averagingPf,n in (22) and
Pd,n in (23) over all possible SNRs.

Theorem 2: For the proposed MSSD system over i.i.d.
Rayleigh fading channels, the average probabilities of false
alarm (Pf,n) and detection (Pd,n) will be bounded by,

Γ(Jv, λn2 )

Γ(Jv)
≤ Pf,n ≤ Θ(k, Jv, ψ, γ[n], λn) (28)

Pd,n ≥ Θ(v, Jv, ψ, γ[n], λn) (29)

whereΘ(x, Jv, ψ, γ, λ) is defined by,

Θ =

(
1+

ψγ

2

)−x ∞∑

n=0

Cnn+x−1

(
ψγ

ψγ + 2

)nΓ
(
n+Jv, λ2

)

Γ (n+Jv)

where Cba is a binomial coefficient, i.e., Cba = b!
a!(b−a)! .

Proof: In Rayleigh fading channels, the lower bound of
the average probability of false alarm will not change as it
is independent of the SNR. The upper bound of the average
probability of false alarm,Pf,n

up
, can be evaluated by using

(22), (25), and (27) as,

Pf,n
up

=

∫ ∞

0

QJv

(√
ψγk,

√
λn

) (γk)
k−1

(γ)kΓ(k)
e−

γk
γ dγk. (30)

Using (4.74) in [22] and (8.352-2) in [23], we have,

QJv

(√
ψγk,

√
λn

)
=

∞∑

n=0

(
ψγk

2

)n
e−

ψγk
2

n!

Γ(n+Jv, λn2 )

Γ(n+Jv)
. (31)

Substituting (31) into (30),Pf,n
up

in (30) can be written as,

Pf,n
up

=
1

(γ)k

∞∑

n=0

(
ψ
2

)n
Γ(n+Jv, λn2 )

n!(k−1)!Γ(n+Jv)

∫ ∞

0

γn+k−1
k e−

ψγk
2

−
γk
γ dγk.

(32)
Using (3.351-3) in [23] for calculating the integral, we obtain,

Pf,n
up

=

(
1+

ψγ

2

)−k ∞∑

n=0

Cnn+k−1

(
ψγ

ψγ + 2

)nΓ
(
n+Jv, λn2

)

Γ (n+Jv)
.

(33)
The lower bound of the average probability of detection can
be approximated similarly.�
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Fig. 2. Comparisons of simulation results and theoretical results for the
probabilities of false alarm and detection over (a)AWGN, and (b) Rayleigh
fading channels with SNR= 5 dB.

IV. SIMULATION RESULTS

In simulations, distributed CRs are assumed to have config-
urations as shown in Fig. 1. The wideband signalxi(t) viewed
by the CRi is assumed to be,

xi(t)=

Nb∑

l=1

√
EilBl · sinc(Bl(t−∆)) · cos (2πfl(t−∆)) + z(t)

(34)
where sinc(x) is defined by sinc(x) = sin(πx)

πx
, ∆ denotes a

random time offset that is smaller thanT/2, z(t) ∼ N (0, 1),
andEil is the received power at the CRi and varies subject
to the fading channel. The wideband signalxi(t) consists
of Nb = 6 non-overlapping subbands, whose bandwidth
Bl = 1 ∼ 10 MHz, with carrier frequencyfl = 0 ∼ 10
GHz. Since the signal has a bandwidth ofW = 10 GHz,
if it were sampled at the Nyquist rate forT = 0.04 µs, the
length of Nyquist samples would beN = 80, 000. However,
in MSSD we usev sampling channels to sample the wideband
signal with different sub-Nyquist rates, whereMi ∼ O(

√
N).

Specifically, we select the first primeM1 ≈ a
√
N (a ≥ 1) and

its v − 1 consecutive primes. The signal energy is calculated
over an interval ofJ = 50 samples. Then 8-bit scalar
quantization is performed in each CR, and these energy data
are transmitted from the CRs to FC over AWGN channels
with SNR= 15 dB. In FC, a test statistic will be formed using
(14). Following [16], the compression rate is defined asM/N ,
whereM is the average number of samples in each CR. The
following figures are obtained with Matlab by using decision
rule in (15) and changing the detection thresholdλn.

Fig. 2 compares the simulation results with the theoretical
results predicted in (22)-(23) and (28)-(29). These curves
are obtained by using Monte Carlo method with 100,000
trials. It is evident that the simulated probability of false
alarm in all figures is close to the lower bound, but far
away from the upper bound. This is due to the fact that the
assumption (allk components in the full spectrum will be
mirrored to the same location when the wideband signal is
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Fig. 3. Performance of MSSD over Rayleigh fading channels with v = 22

andM/N = 0.0228, when the SNR and the number of subbands change.

sub-Nyquist sampled) for deriving the upper bound has a very
low probability of occurring. Fig. 3 shows the performance
of MSSD over i.i.d. Rayleigh fading channels with different
values of k (proportional to the number of subbands). It
depicts that with the same SNR, the detection performance
becomes better when the number of subbands decreases. The
performance improvement of MSSD stems from two reasons.
One of them is that whenk decreases, the probability of
signal overlap becomes smaller when the wideband signal is
sub-Nyquist sampled (the signal overlap may sometimes lead
to the missed detection of the PUs). The another reason is
that, for a fixed number of sampling channels (or a fixed
number of CR nodes in collaboration), decreasingk makes
it more easier to distinguish the occupied frequencies from
the mirrored frequencies as discussions in Section III-C.

In Table I, we compare the implementation complexity of
MSSD with that of the filter-bank system. The comparison
metric is the number of equivalent same-speed ADCs that
are required for achievingPd ≥ 90% and Pf ≤ 10%. For
example, using 10 CRs in MSSD (each CR has one ADC
with an average sampling rate of957.54 MHz), we can obtain
the above detection performance. In contrast, each CR in the
filter-bank system requires 21 ADCs with the sampling rate
of 957.54 MHz to cover all10 GHz spectrum. If we consider
the whole CR network, the filter-bank system employs10×21
ADCs. In other words, the system complexity of MSSD is
much less than that of the filter-bank. Another advantage
of MSSD is that we can trade off (decrease) the average
sampling rate of ADCs by increasing the number of sampling
channels for achieving the same detection performance. This is
because 40 CRs with the average sampling rate of276.77 MHz
has similar performance with the case of 10 ADCs with
the average sampling rate of957.54 MHz. Fig. 4 shows the
performance comparison of MSSD and the CS-based system
[16] over Rayleigh fading channels. We can see that MSSD
outperforms the CS-based system for both compression rates.
Additionally, it can be seen that both systems have better
detection performance when the compression rate increases.
Furthermore, we find that the computational complexity of



TABLE I
COMPLEXITY COMPARISON OFMSSDAND THE FILTER-BANK SYSTEM

OVER RAYLEIGH FADING CHANNELS WITH ZERO DECIBEL SNR.

Number of CRs
10 20 30 40

in collaboration (v)
Number of ADCs

10×1 20×1 30×1 40×1
using MSSD
Number of ADCs

10×21 20×40 30×58 40×74
using filter-bank
Average sampling

957.54 513.08 350.34 276.77
rate of ADC (MHz)

MSSD (similar to energy detection) isO(N), instead of
O(MN) in the CS-based system (as matrix multiplications
for spectrum recovery [16]). Hence, with either limited com-
putational resources at FC or restricted bandwidth for sharing
spectrum sensing data, MSSD will result in a lower spectrum
sensing overhead than the CS-based system.

V. CONCLUSIONS

In this paper, we have proposed a novel system, i.e., MSSD,
for cooperative wideband spectrum sensing in distributed CR
networks. It has been shown that MSSD can significantly
decrease the spectrum sensing requirements of CRs thanks
to the parallel sub-Nyquist samplings with different sampling
rates. We have shown that using a few number of sub-Nyquist
samples, wideband spectrum can be sensed without full spec-
trum recovery, which results in a high energy-efficiency anda
low spectrum sensing overhead. In addition, we have analyzed
and derived some closed-form bounds for the performance of
MSSD over both non-fading and Rayleigh fading channels.

Simulation results have shown that the derived bounds for
the probabilities of false alarm and detection can closely fit
the simulated curves. It has also been shown that using only
a few measurements, MSSD performs well under low SNR
scenarios over Rayleigh fading channels. The performance of
MSSD becomes better when either the number of CRs or the
average sampling rate increases. Compared with previous arts,
we have found that MSSD not only has a lower complexity,
but also has a better detection performance in the fading
scenario, even if the compression rate is extremely low.
Such a MSSD system is not limited to a wideband spectrum
sensing system in CR, the principles of which could easily be
used to design a broadband spectral analyzer, and a signals-
intelligence receiver. The performance analysis of MSSD over
other fading channels, e.g., Nakagami fading, slow fading,and
Rician fading, is left as future work.
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