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Abstract—A significant challenge of cognitive radio (CR) is to
perform wideband spectrum sensing in a fading environment.
In this paper, a novel multi-rate sub-Nyquist spectrum dete&tion
(MSSD) system is introduced for cooperative wideband speatm
sensing in a distributed CR network. Using only a few number

to realize, due to both high implementation/computational
complexity and high financial/energy costs.

Previous work has focused on the implementation of wide-
band spectrum sensing. Tian and Giannakis [10] proposed a

of sub-Nyquist samples, MSSD is able to sense the widebandwavelet detection approach. It provides an advantage af flex

spectrum without the full spectrum recovery. Specifically,given
the low spectrum occupancy, sub-Nyquist sampling is perfoned
in each sampling channel and a test statistic is formed by usg
sub-Nyquist samples from multiple sampling channels. In ader
to improve the system detection performance, we propose tose
different sub-Nyquist sampling rates. After that, we analyze the
performance of MSSD over both non-fading and Rayleigh fadig
channels. Numerical results show that MSSD can considerapl
improve the wideband spectrum sensing performance in a fadig
scenario, with a relatively low implementation complexityand a
low computational complexity.

I. INTRODUCTION

bility in adapting to a dynamic wideband spectrum. However,
characterizing the wideband spectrum requires an analog-t
digital converter (ADC) with a high sampling rate, and the
energy cost for both the ADC and the digital signal processor
(DSP) is prohibitive. In [11], [12], Quaret al. presented a
multiband joint detection (MJD) approach for jointly deiag

the wideband spectrum over multiple frequency bands. It
has been shown that MJD performs well under practical
conditions. In [13], a filter-bank system for wideband spatt
sensing was presented. Nevertheless, it has been idettified
the implementation of a filter-bank system requires a large

Radio frequency (RF) spectrum is a precious and scarce ri2{mPper of radio frequency components [14]. As the spectrum
ural resource for wireless communication systems. Howev8FCUPancy is low, compressed sensing (CS)-based tectsnique
the report published by Federal Communication Commissidffre introduced to implement wideband spectrum sensing
(FCC) has shown that most of licensed spectrum is und@¥ Sub-Nyquist sampling [14]-[16]. An implementation iesu

utilized [1]. Recently, CR [2] has emerged as one of the md%t this approach is that a separate compression device is
promising candidates for improving the spectral utilieati "€Quired in each sampling channel, and the synchronization
efficiency [3]-[6]. Spectrum sensing is one of the most citi of these devices must be addressed. Another problem is that

components in a CR system enabling CR to access the licenfifull spectrum reconstruction requires a high comporti
spectrum when it is not used by primary users (PUs). pmplexity, which results in a high spectrum sensing ovedhe

order to exploit more spectrum opportunities, CR requires a | NS Paper presents a MSSD system for wideband spectrum
wideband spectrum sensing structure. Meanwhile, due to $f1Sing in a distributed CR network. The proposed system can
effects of multipath/shadowing fading, cooperative spent SENS€ the wideband spectrum by only using a few sub-Nyquist
sensing has been considered for increasing the reliatifity SAMPIes without reconstructing the full spectrum, whicdke
spectrum sensing [7]-[9]. In practice, cooperative wideba {0 @ low implementation/computational complexity. Specifi

spectrum sensing in a distributed CR network is difficuff@!ly; in MSSD, sub-Nyquist sampling is performed in each
sampling channel to wrap the sparse spectrum onto itself.
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Spectral energy is calculated by using sub-Nyquist samples
in each sampling channel. A final test statistic is formed by
using energy vectors from all distributed CRs. We then psepo
to use different sampling rates to optimize the detection pe
formance. In addition, we analyze the performance of MSSD
over both non-fading and Rayleigh fading channels, andrderi
some closed-form bounds for the probabilities of falseralar



and detection. Compared with the existing spectrum sensing _ _ L

N . X N g N i N E'
methods, MSSD improves wideband spectrum sensing perfor- —s{"éad|__,| sibtyauist L} ger | ¥ Signal | £ Y
. | ' ) Filter Sampling Energy
mance, with a lower implementation complexity and a lower Cognitive Radio 1 s
spectrum sensing overhead. wiocband] | [suoyauist | [ per |0, snar | 2 Y~
This paper is organized as follows. In Section Il, we Filter Sampling , LEneoy
introduce the signal model for spectrum sensing. In Sedtipn . Cognitive Radio 2 : /
. . . —_— —
we present a r_lovel MSSI_D system for cooperative v_wdebar_1d wigeband| __[Suonyqust | [ per |V [Signar | Ee Y\
spectrum sensing. Numerical results are presented inoBecti Filter Sampling | Energy
IV, with conclusions given in Section V. Cognitive Radio v
Il. SIGNAL MODEL Data | E, [ Fiypothesis | Han
. . Fusi d
In this paper, we model the spectrum sensing on a frequency = Test | Fin
bin n (n = 1,2,---,N — 1) as choosing betweeft , Fusion Centre
absence of PU) and{ resence of PU). We test the _ . . -
( . . ) L (p ) Fig. 1. Block diagram of multi-rate sub-Nyquist spectruntedéon in a
following binary hypothesis, distributed CR network.
Zln H
X|n] _{ H[ g’7[n]+Z[n] H°=” Q) I1l. PROPOSEDSPECTRUM SENSING SCHEME
n ) 1,n

N We assume that distributed CRs collaborate for wideband
where X € C" is the discrete Fourier transform of Nyquispectrum sensing. All CRs keep quiet during the spectrum
samples,H,, stands for the discrete frequency response bgansing interval due to the high-layer protocols, e.g., the
tween the PU and the CRS[n] is the transmitted primary medium access control (MAC) layer protocol. In a short
signal on the frequency bin, and Z[n] is complex additive ohservation time, the spectra viewed by CRs are assumed
white Gaussian noise (AWGN) with zero mean. For simplicityy pe quasi-stationary. The full spectrum vector, i.?,, is
in the rest of the paper we assume that the noise variancekggparse k¥ < N), which means only the largest out
the spectrum is normalized to be 1, i.&€[n] ~ CN(0,1).  of N components are non-neglectable (due to low spectral

As an energy detector does not require prior informatigf.cupancy [19]). In a carrier sense, it means that there are
and has a low complexity [17], we calculate the signal energyy a few active carriers even though most of them are
over an interval ot/ samples by, allocated to different wireless systems. The sparsitylJé\ee,

J-1 k, can be obtained from initialization, e.g., coarse sp@ctru

E[n] = Z | X;[n]>, n=0,1,---,N—1 (2) scanning [20], and will not be addressed here. In additian, w

j=0 assume that the spectral support (a set of frequency bibs tha
where X,[n] denotesj-th spectral observation. The decisior@’® occupied by PUs) in different CRs is correlated due to

rule of the energy detection is given by, similar radio environment. In this paper, we are interested
Hy identifying a w-out-ofwv (w € [1,v]) spectral support (inv
B[] ; Ape n=01,- N-1 3) grUr:)ore thanw CRs, the same frequency bin is occupied by
HO,n
where )\, is a detection threshold for the frequency hin A System Model o _ ) )
Following [18], the signal energy can be modeled by, In MSSD, as shown in Fig. 1, each CR is equipped with
5 H one wideband filter, one low-rate sampler, and a fast Fourier
En] ~ { X%r1’2 Hom (4) transform (FFT) device for calculating signal energy in the
X35 (2y[n]), Han frequency domain. The wideband filters prior to the samplers

where «[n] denotes the signal-to-noise ratio (SNR) at theemove frequencies outside the spectrum of interest, amd ar
CR on the frequency bim, and x3, and x3,(2v[n]) denote altered to have the same bandwidtii, The work procedure
central and non-central chi-square distributions, rethgedg. of MSSD can be described as:

Both distributions have.J degrees of freedom, and the latter 1) Fusion centre (FC) distributes different sub-Nyquist

one has a non-central paramegeiin]. The probabilities of sampling rates to CRs. In an observation tiffiethe
false alarm and detection can be obtained by [18], number of samples in CRs, i.e)/!,---, M, are set
T(J, %) to bev consecutive primes, whei®’ ~ O(v/N).
Py = Pr(Esn] > An|Hon) = TU) (5)  2) CRs perform asynchronous sub-Nyquist samplings (sub-
ject to that the observed spectra within time offset are
Pypn = Pr(Esn] > Ap|Hin) = Qy (\/ 2v[n], \/E) (6) quasi-stationary).

ﬁ .
respectively, wher& (a) is the gamma functior;(a, z) is the ~ 5) FFT is used to calculate spectrufi(i € [1, ”]_)‘
upper incomplete gamma function, ai(a, =) denotes the ~ 4) Signal energy, i.e.l;, is calculated over an interval of
generalized Marcum Q-function. J samples in all CRs, by using®.



5) Each CR quantizes signal energy and transmits it to F@here! denotes all integers withifo, N/M?® — 1], and ¢t is

6) FC fuses received data to form a test statistic, £g., a scaling coefficient for the CR As the noise variance in

7) FC chooses a detection thresholgd, and tests binary distributed CRs is often different, the scaling coefficieht
hypothesis for all frequency bins. can be used for noise-balancing when performing data fusion

8) FC sends the detection results to all distributed CRs.We use the following decision rule as,

B. Multi-channel Sub-Nyquist Sampling Hin
In this section, we will analyze the performance of multi- E\S[n] ; An, n=0,1,--- N—1. (15)
channel sub-Nyquist sampling. It is well known that the Hon

relationship between the aliased spectrum (due to sub-istyqu _ _ _
sampling) and the full spectrum can be represented by (eqdgsume that(2, represents a set of mirrored frequencies

tion (59) in [21]), (frequencies that are not occupied by PUs, but they appear to
Y= be active due to aliased components from sub-Nyquist sam-
yji[m] - Z ijj[m + 1M (7) pling), andQ;; represents a set of unaffected and unoccupied
N l=—00 frequencies as,
where)? e cM and)zz e €V denote sub-Nyquist spectrum i = {nln=m+IM°’, me QL ,n¢ Q) (16)

and full spectrum of thg-th observation in the CR, respec- PN B i Qi i 17

tively. M*¢ and N are the number of samples withifi under v ={nln=m+IM", m¢ Q. n¢ Q'}. 17)

the sub-Nyquist rate and the Nyquist rate, respectively.  Using (13), the test statistic in (14) can be modeled by,
Without loss of g_e)nerality, we uge’ and(2! to denote the

) 2
spectral support ix! € CV andy; € CM" as, X270 n € Qu
i =p o
Q. = {nl,nQa"' 7nk}C{07]~a"' aN_l} (8) E\ X%J’U % Z Cleljf}/Zj[n] , TLGQM
Q= {myms omi) {01, M -1} (@) El .
where()! and ' can be relateq by, | e <% 2 ¢ Miyin]) | neq
my = |nj| g vy Mg € my €5 € [1,k]. (10) =1 (18)

; 4 v 7 4 v i
As k < N and M ~ O(v/N), it can be easily shown Where Qu = N, Qy, Qn = U, Qy, andp € [Lo]
that the probability of signal overlap ii/[m] is very small. denotes the number of CRs, which have mirrored frequencies

the following equation holds from (7), nodes are different, this paper is intere_ste(_j in sensim_gpalt-
A of-v (w € [1,v]) spectral support. For simplicity, we will study
Y/[m] = ~ X;[m + IM]. (11) the performance ofv = v, i.e., Q2 = Ny_, Q. It can be easily

) ) ) __generalized to the case of anye [1, v] by replacingv with w
In such a scenario, Wlth the aid of (11), the scaled aliasgfiha non-central parameter. We note that the parameter
spectrum can be approximately modeled by, dependent upon several factors, e.g., the sampling ra@Rsn
N . CN(0,1), m ¢ Qb and the spectral support. For instance, if sub-Nyquist §amp
\ 27 im] ~ { CN(@H};Si[n], 1), meqi (12) rates of all CRs are the samewill be equal tov. In such a
scenario, it is difficult to distinguish betwedty[n](n € Q)
where H{ denotes the discrete frequency response betwesmi E\S[n](n € Q). However,p can be minimized by using
the PU and the CR, and S*[n] is the primary transmitted different sampling rates in different CRs.
signal that is received by the CRNote that\/% in (12) is
used to scale the sub-Nyquist spectrum vector so that it haS"a

Multi-rate Sub-Nyquist Spectrum Detection

similar noise level to the Nyquist case. In this section, we propose to use different sampling rates
The signal energy in the CRi.e., Ei[m] = 37, ]yj’i[m]f, in CRs to optimize the detection performance. Firstly, we
can be modeled by using (12), consider the case &f= 1, which means that only one location
5 i ny1 € Q is occupied by the PU, then Lemma 1 will hold.
, X2.> m ¢ S, . : :
B! [m]~ 5 M ; (13) Lemma 1. If the length of samples in multiple CRs,
M X2 (2 N7 [”]) , me M, M2, ..., M", are different prime numbers, and satisfy,
Whergyi[n] denotes SNR at the CRon the frequency bim. MM} >N, Vi#jel[l,uv] (19)
The signal energy in distributed CRs will then be collected a ) o
FC. A final test statistic, i-eE\s[n], is formed by, then two or more CRs cannot have mirrored frequencies in
v the same location of € Q.
E\S[n] = ﬂEl [m+IM], ne[0,N),m €[0,M?) (14) Proof: The length of samples in the CRand;j are assumed
— M to be M and M7, respectively. According to (10) and (16),



the mirrored locations that are projected from € 2 are D. Performance Over Rayleigh Fading Channels

given by, Since CR nodes are distributed, the fading channels between

9i = 11| moa iy HIM" =ny—hM"+IM*, h #1 the PUs and the CRs are assumed to be independent and

95 = "] mod (A,fj)+iMj=n1—hJV[j+ZM-j, h+1[ (20) identically distributed (i.i.d.). Considering Rayleiglading,

the SNR at the CR follows an exponential distribution.
herefore,, and~ follow Gamma distributions given by,

(W) ! o

where integers and’ are from the operation of modulo, an
I=he -1+ 41 =1] I=h e [-[{F1+1, 351 -1
To avoidg; = g;, is equivalent to avoidingl — h)M"* = (I—

h)M?, we simply assume that/* and M7 are different primes, flw) = (7)*T(v) w20 (26)
and max(|l — h) < M’ i.e. [{F] -1 < M?. The condition -

M*'M? > N will satisfy this. Furthermore, if this holds for Flw) = (%) e T, w>0 (27)
two CRs, the case for more than two CRs also hdlds. (MFC(k) -

Secondly, we find that whek > 2, the parametep in  \yheres denotes local-mean SNR (SNR averaged over a few
(18) will be bounded by: when conditions in Lemma 1 canens of wavelength), anfi(z) is a probability density function.
be satisfied. This is because only one CR node can map thg, \he MSSD system, the average probabilities of false alarm
frequencyn; € (2 to the mlrrored frequency € O, and the 5y getection can be calculated by averagig, in (22) and
number of components .'ﬂ IS k. I Py, in (23) over all possible SNRs.

Theorem 1: In MSSD, if the length of samples withiff in Theorem 2: For the proposed MSSD system over i.i.d.

) 1 2o N ) )
multiple CRs,M", M?, ..., M, are different prime numbers’Rayleigh fading channels, the average probabilities dfefal

and satisfy, alarm (P;.,) and detection ,.,) will be bounded by,
MM’ > N, Vijel[l,v (21) R
using the decision rule of (15), the probabilities of faltaria % < Pj, < O(k, Ju, ¢, 7[n], \n) (28)
(Y

and detection can be bounded by,

Pin > O(v, Jv, 9,7 [n], \n) (29)
T(Jv, 2 = 7, ) is def
(F(ij; ; )SPf,n <0, % ZC”M”’Y” il Vo | 22) where©®(z, Jv, 1,7, \) is defined by,
v . _\ —T OO _ n
zj:el[lﬂ)] o — 1_1’_@ ch 1 ’[/)’Y r (n+JUa %)
2 e\ yy+2) Tt Jv)

n=0

fsn (\J %ZciMwi[n], \//\n) (23) Where ¢ is a binomial coefficient, i.e., C= #La),
i=1

Proof: In Rayleigh fading channels, the lower bound of

Proof: As above discussions, (22) follows from (15), (185h§ average probability of false alarm will not change as it
andp < k. The inequality in (23) holds because when onf independent of the SNR. -E,E‘e upper bound of the average
spectral component maps to another spectral component, RfigPability of false alarmp.,, ™, can be evaluated by using
probability of detection will increasé.] (22), (25), and (27) as,

It can be seen from (22) and (23) that either more CRs____ oo k=1
or a smallerk will lead to a better detection performance. Pf,nup:/ QJv(v (Col'% \/E) %GTKM- (30)
In addition, by comparison of (6) and (23), we can see that 0_ 7
the probability of detection increases when using eitheremdJsing (4.74) in [22] and (8.352-2) in [23], we have,

sampling channels or higher sampling rates. Given the fact o (e ne_% ( Ay
that if M;M; = b > N (b is constant),M; + M; can ) (2) I'(n+Jv, 5+

. . ! » W% VA ) = . (31
be minimized when they are consecutive primes, we choosg‘l ( Yk Z n! L'(n+Jv) (31)

. . . n=0
M*', M2, ..., M" to bev consecutive prime numbers for using

the fewest measurements. In such a scenario, the followiigbstituting (31) into (30)Pf,nup in (30) can be written as,

approximations can be made, N (¢)nr( oA
250 My M~ p—un_ 1 2) TN /°°n+k71 BEL Y
D R 2 DA G e Dy oy AU -
J=k i rijais - (32)
2 1_261[1 ]C]M Y o7 =F Using (3.351-3) in [23] for calculating the integral, we aiot,
g N ~ Tj; 7= n (25) b _ 1+¢7 *kicn vy \'T (n—i—Jva AT")
ij€(10] fn = 2 ) &gy +2) T(tJv)
where ] is the average’ M’ over multiple CRsg = 2M, (33)

A v N The lower bound of the average probability of detection can
W=y andy = SIE 4. N . A gep y
i €lL,] e approximated similarly.]
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Fig. 3. Performance of MSSD over Rayleigh fading channeth wi= 22

. . ) ) ) and M/N = 0.0228, when the SNR and the number of subbands change.
Fig. 2. Comparisons of simulation results and theoretieslults for the

probabilities of false alarm and detection over (a)AWGNd 4h) Rayleigh ~sub-Nyquist sampled) for deriving the upper bound has a very
fading channels with SNR 5 dB. low probability of occurring. Fig. 3 shows the performance
IV. SIMULATION RESULTS of MSSD over i.i.d. Rayleigh fading channels with different

In simulations, distributed CRs are assumed to have conf5j1|ues of k (proportional to the number of subbands). It
e

urations as shown in Fig. 1. The wideband sigridt) viewed depicts that with the same SNR, the detection performance
by the CRi is assumed to be, becomes better when the number of subbands decreases. The

Ny performance improvement of MSSD stems from two reasons.
xi(t)zz EiB; - sinc(By(t—A)) - cos (27 fi(t—A)) + z(t) Qne of them is that wherk decreases, the_ probablllt_y of _
signal overlap becomes smaller when the wideband signal is
. (34) sub-Nyquist sampled (the signal overlap may sometimes lead
where sincg) is defined by singr) = % A denotes a to the missed detection of the PUs). The another reason is
random time offset that is smaller th&wy2, z(t) ~ A (0,1), that, for a fixed number of sampling channels (or a fixed
and E} is the received power at the CRand varies subject number of CR nodes in collaboration), decreasingnakes
to the fading channel. The wideband signdlt) consists it more easier to distinguish the occupied frequencies from
of N, = 6 non-overlapping subbands, whose bandwidtihe mirrored frequencies as discussions in Section III-C.
B, = 1 ~ 10 MHz, with carrier frequencyf; = 0 ~ 10 In Table I, we compare the implementation complexity of
GHz. Since the signal has a bandwidth f = 10 GHz, MSSD with that of the filter-bank system. The comparison
if it were sampled at the Nyquist rate f@f = 0.04 us, the metric is the number of equivalent same-speed ADCs that
length of Nyquist samples would b&¥ = 80,000. However, are required for achievind®; > 90% and P; < 10%. For
in MSSD we usey sampling channels to sample the widebanexample, using 10 CRs in MSSD (each CR has one ADC
signal with different sub-Nyquist rates, wheké ~ O(v/N). with an average sampling rate 957.54 MHz), we can obtain
Specifically, we select the first primée; ~ av/N (a > 1) and the above detection performance. In contrast, each CR in the
its v — 1 consecutive primes. The signal energy is calculatdiiter-bank system requires 21 ADCs with the sampling rate
over an interval ofJ = 50 samples. Then 8-bit scalarof 957.54 MHz to cover all10 GHz spectrum. If we consider
guantization is performed in each CR, and these energy d#ta whole CR network, the filter-bank system emplo§s 21
are transmitted from the CRs to FC over AWGN channeADCs. In other words, the system complexity of MSSD is
with SNR= 15 dB. In FC, a test statistic will be formed usingmuch less than that of the filter-bank. Another advantage
(14). Following [16], the compression rate is definediasN, of MSSD is that we can trade off (decrease) the average
where M is the average number of samples in each CR. Tampling rate of ADCs by increasing the number of sampling
following figures are obtained with Matlab by using decisioghannels for achieving the same detection performancs.ighi
rule in (15) and changing the detection threshald because 40 CRs with the average sampling ra®¥ef77 MHz
Fig. 2 compares the simulation results with the theoretichhs similar performance with the case of 10 ADCs with
results predicted in (22)-(23) and (28)-(29). These curvéise average sampling rate 857.54 MHz. Fig. 4 shows the
are obtained by using Monte Carlo method with 100,0Q8erformance comparison of MSSD and the CS-based system
trials. It is evident that the simulated probability of fals[16] over Rayleigh fading channels. We can see that MSSD
alarm in all figures is close to the lower bound, but faputperforms the CS-based system for both compression rates
away from the upper bound. This is due to the fact that tledditionally, it can be seen that both systems have better
assumption (allk components in the full spectrum will bedetection performance when the compression rate increases
mirrored to the same location when the wideband signal Fairthermore, we find that the computational complexity of

=1



TABLE |

COMPLEXITY COMPARISON OFMSSDAND THE FILTER-BANK SYSTEM I
OVER RAYLEIGH FADING CHANNELS WITH ZERO DECIBEL SNR. 7
Number of CRs |
. . 10 20 30 40 4
in collaboration {) s
Number of ADCs s |
) 10x1 20x1 30x1 40x 1 3
using MSSD 5 J
Number of ADCs Z .
) ) 10x21 | 20x40 | 30x58 | 40x74 § 04 AR R I CS-based: M/N=0.0165 4
using filter-bank g - =+ CS_based: MIN=0.0228
Average sampling 03l - T : f
957.54 | 513.08 | 350.34 | 276.77 i - MSSD: MIN-0.0165
rate of ADC (MHz) 02f 7 — MSSD:  M/N=0.0228 ]
i
i |
MSSD (similar to energy detection) i©®(N), instead of 0Tl
O(MN) in the CS-based system (as_ mat_rix m_uIti_pIications %01 o2 03 o4 05 o8 o7 o8 o9 1
for spectrum recovery [16]). Hence, with either limited com Probabilty of false alarm

putational resources at FC or restricted bandwidth forisbar _. Comparison of MSSD and CS-based system over Rayleiging

. . . Fig. 4.
spectrum sensing data, MSSD will result in a lower SpeCtrUEH%nnels with SNR: 0 dB andv = 22, when compression raté/ /N varies.
sensing overhead than the CS-based system.
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