



audio

news

EPSRC/MobileVCE Core 5 Programme

# **The Green Radio Project – An Overview of Outcomes**

### Professor Tim O'Farrell

GR Academic Coordinator Department of Electronic & Electrical Engineering University of Sheffield

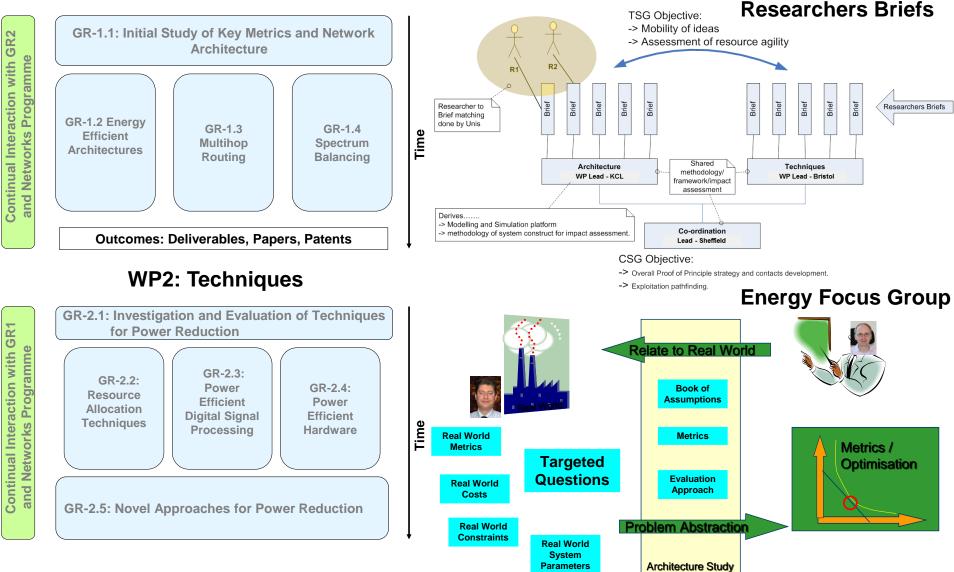
UK-China Bridge Workshop 29<sup>th</sup> – 31<sup>st</sup> May 2012 Herriot-Watt University



# **Presentation Outline**



- 1. Introduction
  - Programme Structure
  - Research Briefs
  - Targeted Questions
- 2. Energy Metrics
- 3. Architecture & Techniques Activities
- 4. Framework Documents
  - Register of Technologies
  - Book of Assumptions
  - BS Power Consumption Models
- 5. Thematic Outcomes
  - Architecture
  - Relaying & Multihop
  - Hardware/Scheduling
- 6. Integration Outcomes
  - Enterprise
  - Wide Area (Macro)
  - Dense Urban Hetnet
  - VCESim


- 7. Sweet-Spot Solutions
  - CRAN
  - SON & Machine Learning
  - Energy Harvesting
- 8. Competing Research
- **10.** Conclusions



# Introduction



### **WP1: Architectures**

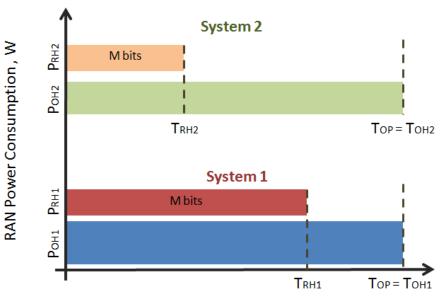




# **Energy Metrics**



Book of Assumptions v2, and TR-GR-0071 Baseline RAN


Energy (E) = Power (P) x Time (T):

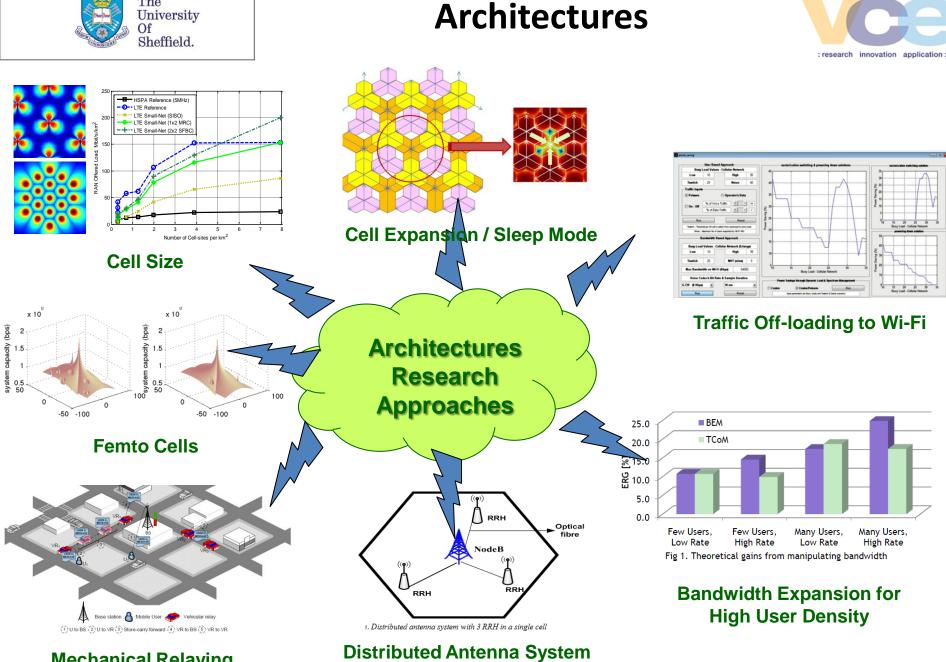
$$E = P_{RH}T_{RH} + P_{OH}T_{OH}$$

ECR = Energy (E) / M bits delivered:

$$ECR = \frac{E}{M} = \frac{P_{RH} \frac{M / T_{OH}}{M / T_{RH}} + P_{OH}}{M / T_{OH}} = \frac{P_{RH} \frac{R}{C} + P_{OH}}{R}$$

where *R* is the offered traffic rate, and *C* is the achievable system throughput. *R/C* can be seen as the system *load*, *L* (proportion of transmit period to total operational period).



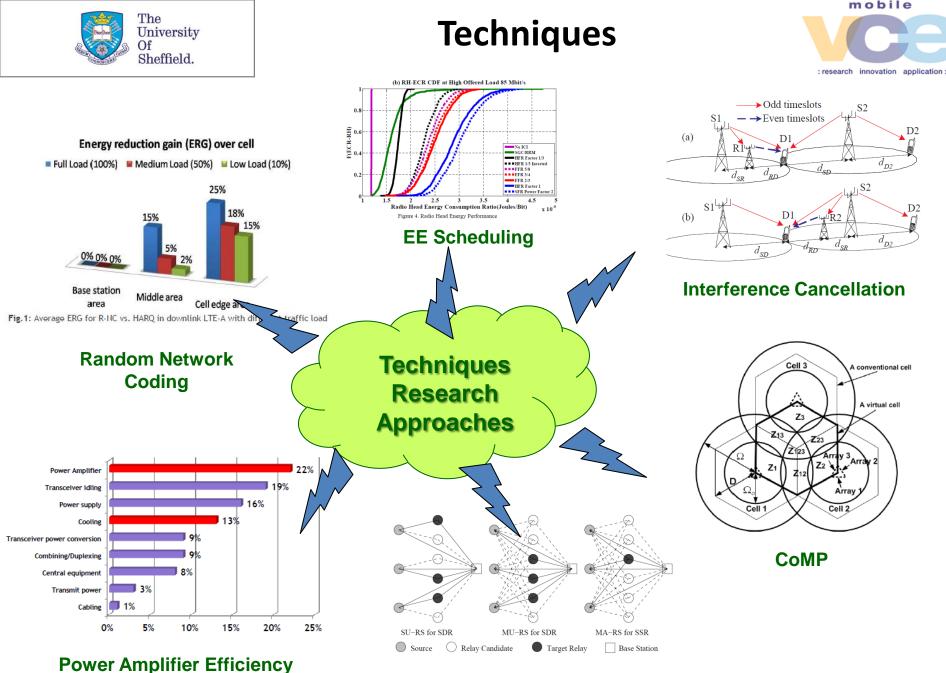

Time Elapsed, s

### ECG = Sys 2 Energy (E2) / Sys 1 Energy (E1):

$$ECG = \frac{E_2}{E_1} = \frac{P_{RH,2}T_{RH,2} + P_{OH,2}T_{OP}}{P_{RH,1}T_{RH,1} + P_{OH,1}T_{OP}} = \frac{P_{RH,2}\frac{R}{C_2} + P_{OH,2}}{P_{RH,1}\frac{R}{C_1} + P_{OH,1}} = \frac{P_{RH,2}L_2 + P_{OH,2}}{P_{RH,1}L_1 + P_{OH,1}}$$

ERG = (1 – 1 / ECG) x 100%:

$$ERG = (1 - \frac{P_{RH,1}L_1 + P_{OH,1}}{P_{RH,2}L_2 + P_{OH,2}}) \times 100\%$$




For Cell Edge Users

mobile

**Mechanical Relaying** 

The



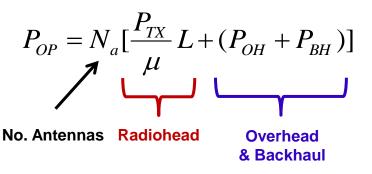
#### Cooperative Relaying and Backhauling



# **Framework Documents**



| Register of<br>Technologies | Tracks       | Technical Approach                          | #<br>Res' | RF<br>ERG% | OP<br>ERG%     | Average<br>ERG%       |
|-----------------------------|--------------|---------------------------------------------|-----------|------------|----------------|-----------------------|
|                             | Cell         | 1. Cell Topology<br>2. Macro/Femto          | 5         | 90<br>46   | 60             | <u>51</u> , <u>27</u> |
| Colour Key                  | Deployment   | 2. Macro/Femto<br>3. DAS vs. nonDAS         |           | 46<br>9    | 66             |                       |
| RF                          |              | 4. Network Coding                           |           | 37         | <u>-9</u><br>5 |                       |
| Ор                          |              | 5. Femto vs. WiFi                           |           | <u>75</u>  | <u>15</u>      |                       |
|                             | Frequency    | 6. Spectrum Management                      | 2         | <u>70</u>  | 50             | <u>70</u> , <u>46</u> |
|                             | Management   | 7. Energy Aware N/W Selection               |           | -          | <u>42</u>      |                       |
|                             | Multihop     | 8. Multihop in LTE-A                        | 6         | 45         | 40             | <u>64, 37</u>         |
| Themes                      | Relaying     | 9. Mechanical Relaying                      |           | 80         | -              |                       |
|                             |              | 10. Scheduling for MH Relay                 |           | 89         | 53             |                       |
| Theme 1                     |              | 11. Power Aware Routing                     |           | 75         | 30             |                       |
| Architectures               |              | 12. PHY Cooperation                         |           | 90         | -              |                       |
| Theme 2                     |              | 13. WiFi Cooperation                        |           | 37         | 0              |                       |
| Relaying                    |              | 14. N/W Coding for MH Relay                 |           | <u>30</u>  | <u>63</u>      |                       |
| Itelaying                   | BS Radio     | 15. PA Efficiency                           | 2         | -          | 33             | <mark>98</mark> , 33  |
| Theme 3                     | Efficiency   | 16. Antenna Efficiency                      |           | 98         | -              |                       |
| Hardware                    | Interference | 17. Beamforming                             | 2         | 94         | 63             | <u>69</u> , <u>31</u> |
| Theme 4                     | Management   | 18. Distributed Interf. Cancel <sup>n</sup> |           | 83         | 22             |                       |
| Scheduling                  |              | 19. MIMO Interf. Cancel <sup>n</sup>        |           | <u>30</u>  | <u>9</u>       |                       |
|                             | Scheduling + | 20. Multiuser Diversity                     | 4         | <u>56</u>  | -              | <b>50</b> , 7, 28     |
|                             | RRM          | 21. Link Adaptation                         |           | <u>72</u>  | -              |                       |
|                             |              | 22. Dynamic RRM                             |           | <u>64</u>  | -              |                       |
|                             |              | 23. EESB/BEM Scheduler                      |           | 40         | 2, 30          |                       |
|                             |              | 24. PF Energy Scheduler                     |           | 33         | <u>12</u> , 26 |                       |
|                             |              | 25. eNodeB Coop Scheduling                  |           | <u>45</u>  | -              |                       |
|                             |              | 25. TD Sleep Modes                          |           | 39         | -              |                       |

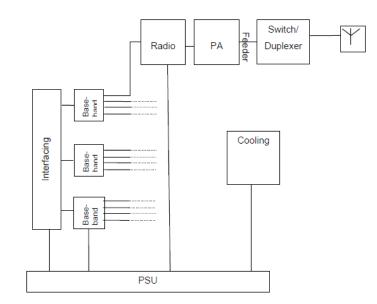


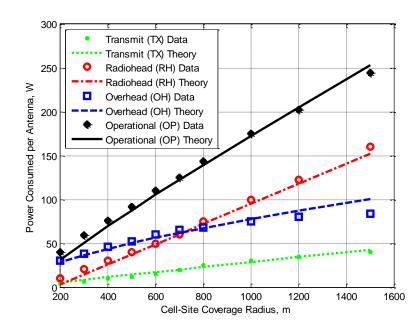

# **Framework Documents**



Book of Assumptions v2, and TR-GR-0013 BS Efficiency

Developed base-station **Operational (OP)** power consumption model that is a function of: • **Radiohead (RH)** power (Load *L* dependent) • **Overhead (OH)** and **Backhaul (BH)** power (Load independent)





There is a relationship between the BS coverage radius and the power consumption of the BS:

- Power amplifier efficiency decreases with BS size
- Overhead power varies slowly with BS size
- Backhaul power is roughly constant

This yields an approximate empirical formula between operational power and coverage radius (*r*):

$$P_{OP} \approx N_a [0.1rL + (r^{0.62} + P_{BH})]$$







# **Thematic Deliverables**



## **Key Observations from The Architecture Theme**

- There are significant energy gains of 40-60% reported from *traffic off-loading* in outdoor, indoor and enterprise scenarios.
- There are also significant energy gains of up to 50% from spectrum balancing.
- Results indicated that the *LTE system is more efficient than the HSPA* standard by 10-50%.
- The use of *omni-directional antenna cells* in place of tri-sectored ones can save 60-80% energy under low offered traffic load conditions.
- Network coding found to be less promising with only small operational energy gains reported.
- Distributed Antenna System (DAS) and Network MIMO can give operational ERGs up to 59% in *planned hotspot areas close to the cell edge*.

## Key Observations from The Relay/Multihop Theme

- Scheduling in relay-aided networks achieves operational energy savings up to ~50%.
- Mechanical relaying achieves >80% ERG for RF but the gains depend on the elasticity of the service traffic. Mechanical relaying allows BS to be powered down.
- Routing in multi hop wireless networks using cooperative diversity produces operational energy savings of up to 50%.
- Random Network Coding in relay-aided cellular networks outperforms the HARQbased scheme and gives operational energy savings of ~30% and 40% for relayassisted and single-hop scenarios.



# **Thematic Deliverables**

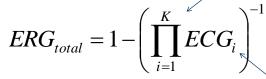


## **Key Observations from The Hardware/Scheduling Theme**

- A narrowband Class-J prototype PA operating at ~2GHz with a 140MHz bandwidth delivered a peak output power in excess of 10W with an *efficiency of 74%*.
- A multi-channel PA covering 1.6GHz to 2.2GHz delivered a peak output power in excess of 10W with an efficiency of 55%.
- Antenna efficiency of 95% for air-gap dielectric but the bandwidth < whole LTE band; a lower antenna efficiency of 90% for air-gap dielectric can cover the LTE band.
- Energy efficient scheduling achieves RF ERGs from 40% to 70%, these gains reduce to ~
  30% when RH only is considered but *gains are eroded to 5-10% when BS overheads* are considered.
- EE scheduling algorithms had a *low energy cost* when implemented compared to other BS processes.
- The potentially high ERGs for radio heads available from energy efficient schedulers may be *inhibited by the constraints of current PA technology* (i.e. when input signal to PA is low)



# **Integration Studies**




|                             | ERG<br>[%] | Antenna | PA | Multi-hop<br>Relaying | BS<br>Coop | R-NC | Interference cancellation | Packet<br>Scheduling |
|-----------------------------|------------|---------|----|-----------------------|------------|------|---------------------------|----------------------|
| Antenna                     | 18         |         |    |                       |            |      |                           |                      |
| PA                          | 33         |         |    |                       |            |      |                           |                      |
| Multi-hop<br>Relaying       | 50         |         |    |                       |            |      |                           |                      |
| BS Coop                     | 59         |         |    |                       |            |      |                           |                      |
| R-NC                        | 40         |         |    |                       |            |      |                           |                      |
| Interference<br>Cancelation | 22         |         |    |                       |            |      |                           |                      |
| MH<br>Scheduling            | 53         |         |    |                       |            |      |                           |                      |

### Wide area (Macro) Integration

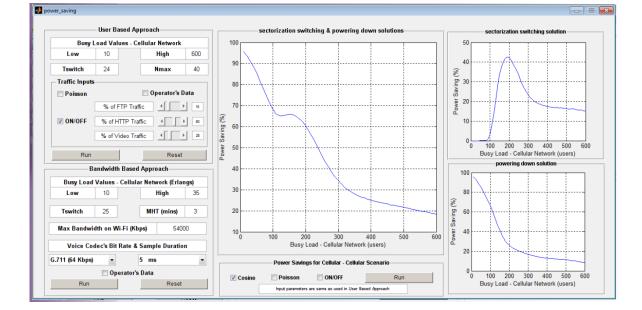
### **Interaction Matrix**

K number of Integrated techniques



Energy Consumption Gain

One gain or the other

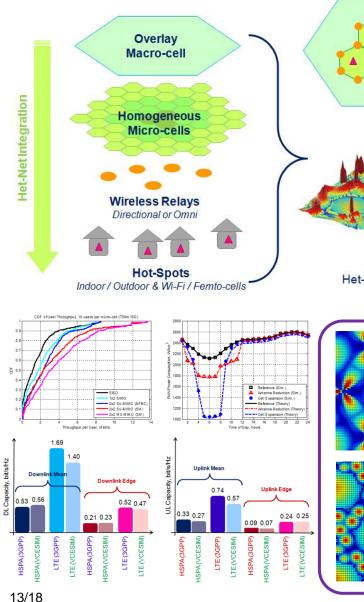

Full benefit of both techniques

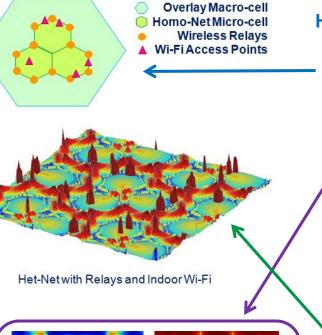
Unknown interaction on gains

Less than the cumulative benefit of the two

### Enterprise

3G to WiFi Off-Load




## **VCESIM: Dense Urban Hetnets**

Version 2.1 Released (April 2012), in Deliverable-GR-0016







Heterogeneous RAN (wrap around) 2-hop RS, 802.11n AP, Femto-BS, Macro/Micro-BS, DAS/RRH

Dynamic Base-stationsAntenna beam tilt/pan/fan, SleepMode Management and CellExpansion

Transmit Efficient Techniques Interference avoidance, MIMO, Mechanical relaying, CoMP,



Integration Dynamic Programming, Self-Organizing-Network (SON)



Geographic Specific Test Case London Traffic and RAN model

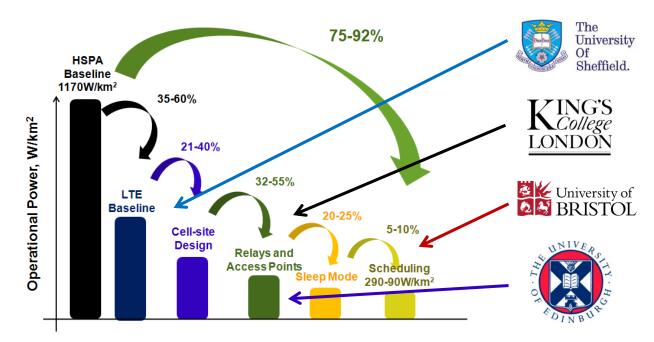


## Integration Results





### • Stage 1: Multiple Access


LTE is 1.5x more spectrally efficient than HSPA and results in a 35%-60% energy saving.

### Stage 2a: Green Architecture and Techniques

Architecture and Hardware: fewer BSs with relays and APs saves 50% energy. Dynamic BSs that can expand and contract saves 40% energy. Hardware improvements save 5% energy.
 Transmission Techniques: Mechanical Relaying (Store-Carry-Forward) saves up to 26% energy. Energy Aware Scheduling and Interference Avoidance saves up to 10% energy.

#### • Stage 3: Integration of GR Research under VCESIM

Integration of Architecture and Techniques into a Green RAN saves 75-92% energy.

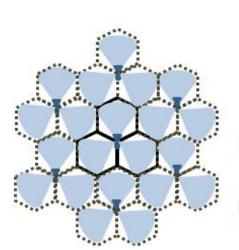


#### **Integration**

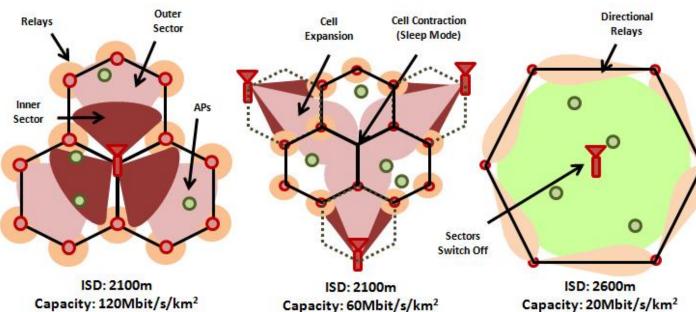
Dynamic Cells, Sleep Mode, Interference Avoidance, Relaying, Indoor Network

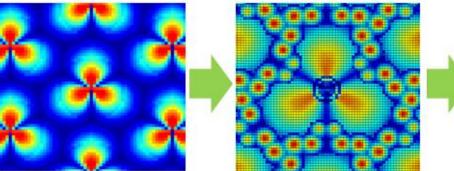
Mechanical Relaying, Wi-Fi offloading.

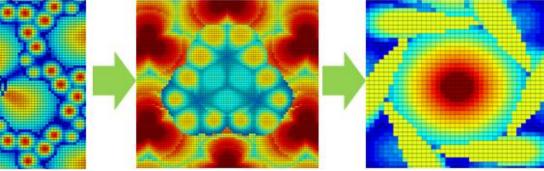
Hardware and Energy Efficient Scheduling


Femto-cell Deployment and 2 Layer Het-Nets




### **Dynamic Green LTE-A RAN**


Integration Study: D-GR-0013 (Dec. 2011)



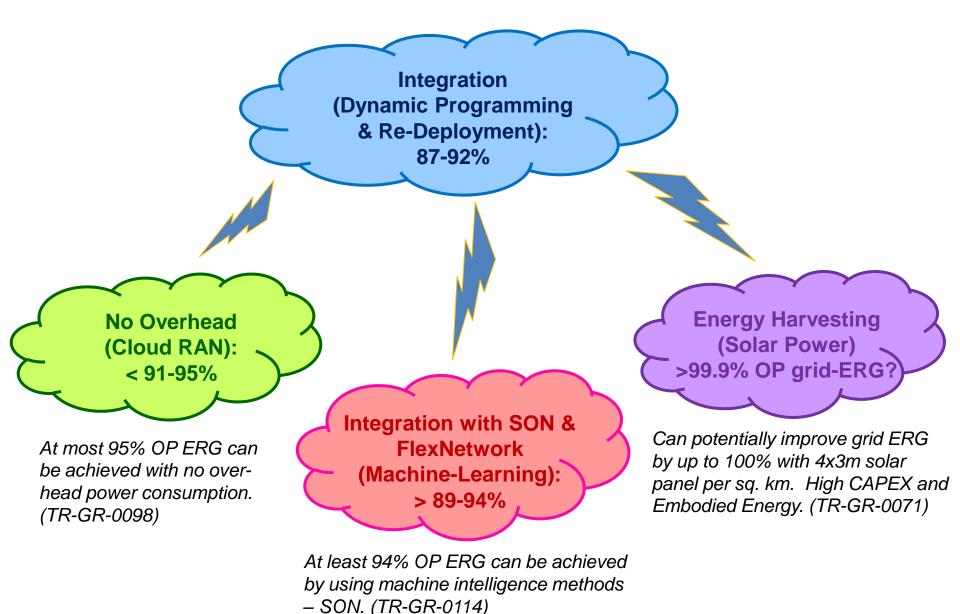



ISD: 750m Capacity: 120Mbit/s/km<sup>2</sup>








HSPA/LTE Reference

Green LTE-A RAN (High Load 87% ERG to Low Load 92% ERG) Also reduces 39-75% OPEX



Sweet-Spots ⇒100x





16/18



### **Competing Research**



|                      | MVCE<br>GR    | EARTH              | OPERA-<br>Net     | GSMA<br>MEE        | Cool<br>Silicon   | GREEN-T           | Green-<br>Touch             |
|----------------------|---------------|--------------------|-------------------|--------------------|-------------------|-------------------|-----------------------------|
| Region &<br>Duration | UK<br>2009-12 | Europe<br>2010-12  | Europe<br>2008-11 | Global<br>2011     | Global<br>2012/13 | Europe<br>2011-14 | Global<br>2010-15           |
| Target<br>Research   | 4G<br>LTE-A   | Mobile<br>Networks | GSM               | Mobile<br>Networks | ІСТ               | 4G<br>LTE-A       | ICT                         |
| Target ERG           | 99%           | 50%                | N/A               | 10-25%             | 50%               | N/A               | 99.9%                       |
| Achieved<br>ERG      | <92%          | In progress        | 53%               | In progress        | Too early         | Too early         | >97%<br>(Mostly in<br>Core) |

Integrated Cross-Layer Solution (Architecture, Techniques and Hardware)



Bit-Interleaved Passive Optical Network



# **Observations from GR**



## **Key Observations**

- One solution does not cure all
- Integration of solutions is key
- Different load demands need different RAN configurations (in quasi real-time)
- Overhead and Backhaul energy consumption are limiting factors

## **Big Ticket Items**

- Cell deployment
- Relaying
- Sleep modes

## **Polarised Trends**

- Fewer large, high capacity cells augmented with relays
- Many small cells, heterogeneous deployments
- Femtocell/WiFi off-loading

