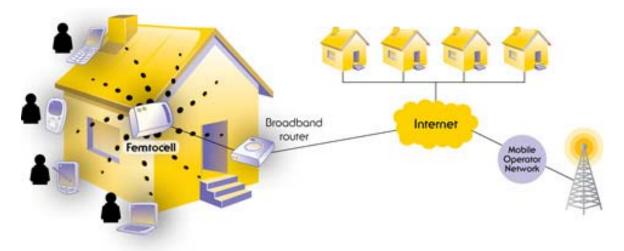
Minimising Cell Transmit Power Towards Self-Organized Resource Allocation in OFDMA Femtocells

Xiaoli Chu

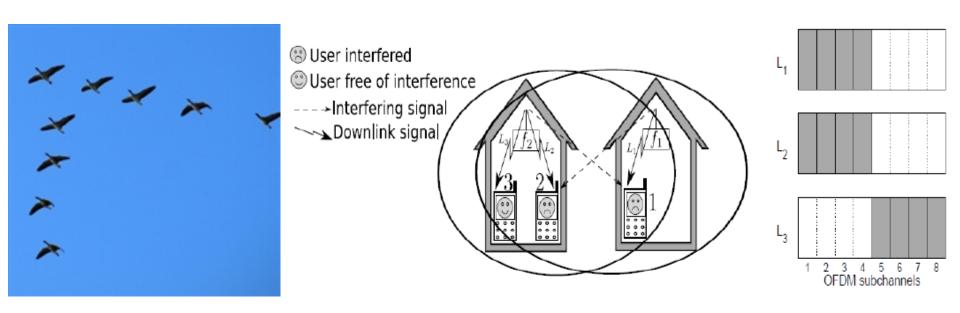
Centre for Telecommunications Research

King's College London

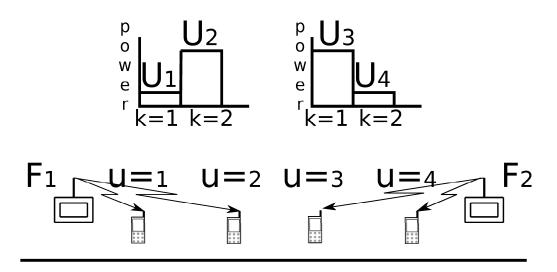

14 December 2011

Outline

- Introduction
- DL power minimization based resource allocation (joint work with David López Pérez)
 - MSC, RB and power allocation
 - RB and power allocation, given MSC
- Simulation and results
 - Simulation setup
 - Network performance
- Conclusion


Femtocells

- Femtocells are low-power wireless access points that operate in licensed spectrum to connect standard mobile devices to a mobile operator's network using residential DSL or cable broadband connections [Source: Femto Forum].
 - Improve indoor coverage
 - Unload traffic from overburdened macrocells
 - Likely to be user-deployed → self-organization
 - Closed access, open access, hybrid access


Self-Organized Resource Allocation

 Resource allocation strategies or rules that allow cells to independently perform assignments, while converging to a network-wide efficient resource allocation pattern

DL Transmit Power Minimization

- Minimizing DL transmit power per cell
 - Less power is allocated to users that have better locations or lower throughput demands.
 - A cell tends to use RBs that are less faded or interfered, where less power is needed to get a targeted SINR.
 - Mitigates interference to other cells

Resource Allocation Based on DL Power Minimization

- Each cell allocates MCS, RBs and power to users independently
- Target is to minimize DL transmit power

Transmit power needed by cell
$$m$$
 to serve user u in RB k with MCS r
$$p_{m,u,k} = \gamma_{r_u} \cdot \frac{w_{u,k} + \sigma^2}{\Gamma_{m,u}}$$

$$\frac{\varphi_{r_u}}{\Gamma_{m,u}} : \text{target SINR}$$

$$w_{u,k} : \text{interference power}$$

$$w_{u,k} : \text{interference power}$$

Constraints:

- No more than one UE per RB per cell
- One MCS for each UE
- UE throughput demand must be satisfied

Problem Formulation

Joint MCS, RB and power allocation problem (RAP)

$$\min_{\chi_{u,k,r}} \sum_{u=1}^{U} \sum_{k=1}^{K} \sum_{r=1}^{R} P_{u,k,r}^{m} \cdot \chi_{u,k,r}$$
 (6a)

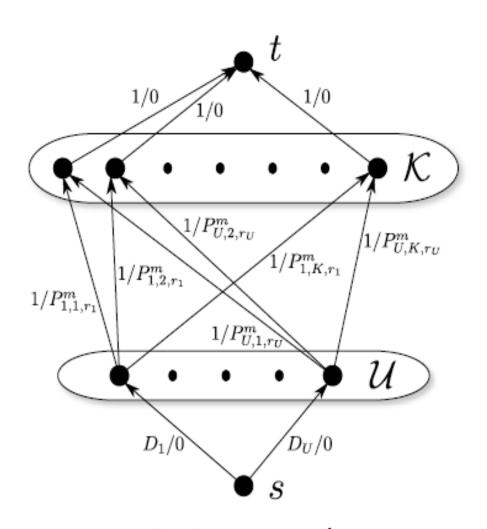
Transmit power of cell *m* to serve user *u* in RB *k* with MCS *r*

subject to:

$\sum_{u=1}^{U} \sum_{r=1}^{R} \chi_{u,k,r} \le 1$	$\forall k$	(6b)	One UE per RB
$\sum_{r=1}^{R} \rho_{u,r} \le 1$	$\forall u$	(6c)	One MCS per UE
$\chi_{u,k,r} \le \rho_{u,r}$	$\forall u,k,r$	(6d)	
$\sum_{k=1}^{K} \sum_{r=1}^{R} \Theta \cdot eff_r \cdot \chi_{u,k,r} \ge TP_u^{req}$	$\forall u$	(6e)	UE throughput demand must be satisfied
$\rho_{u,r} \in \{0,1\}$	$\forall u, r$	(6f)	UE <i>u</i> uses MCS <i>r</i>
$\chi_{u,k,r} \in \{0,1\}$	$\forall u, k, r$	(6g)	UE <i>u</i> uses MCS <i>r</i> in RB <i>k</i>

RB and Power Allocation

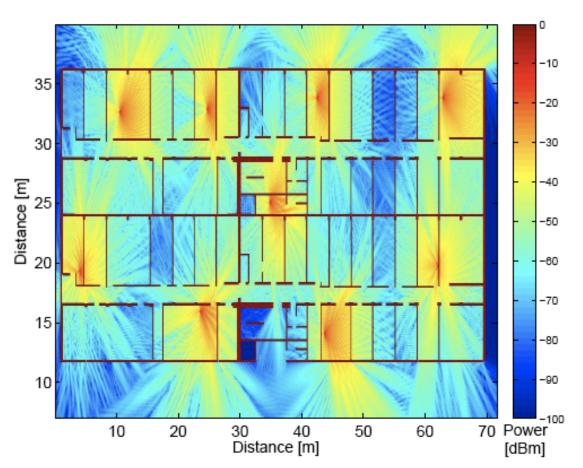
- RB and power allocation problem (RPAP)
 - If the MCS of a user is fixed a priori, the joint MCS, RB and power allocation problem can be simplified to


$$C_{\mathcal{S}} = \min_{\phi_{u,k}} \sum_{u=1}^{U} \sum_{k=1}^{K} P_{u,k,r_u}^m \cdot \phi_{u,k}$$
 (6a*)

subject to:

$\sum_{u=1}^{U} \phi_{u,k} \le 1$	$\forall k$	(6b*)	One UE per RB
$\sum_{k=1}^{K} \phi_{u,k} = D_u$	$\forall u$	(6e*)	UE <i>u</i> must have <i>Du</i> RBs
$\phi_{u,k} \in \{0,1\}$	$\forall u, k$	(6g*)	UE <i>u</i> uses RB <i>k</i>

Solving RPAP


- The minimum-cost networkflow can be used to provide an optimal solution to RPAP.
- A network simplex approach is used to solve the minimum-cost network-flow.
- Running time: around 0.044ms

Label: capacity/cost

Simulation Setup

Scenario: 9 femtocells, 8 RBs, and 8 UEs per femtocell

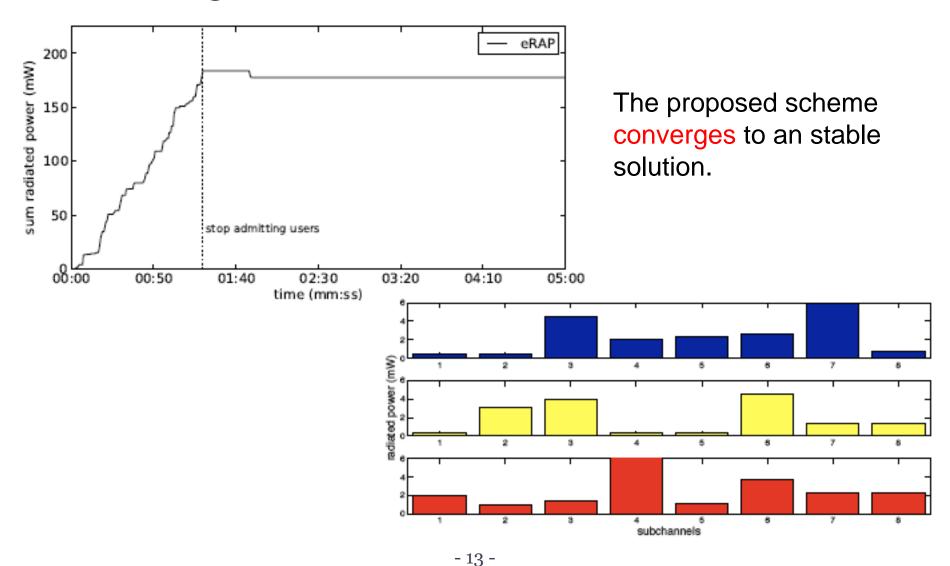
UEs are uniformly distributed within each femtocell coverage area.

Each UE connects to the network for an exponentially distributed time (mean = 90s).

When a UE disappears, a new one is generated in a randomly selected location.


Simulation Setup

Parameter	Value	Parameter	Value
Simulation time	10min	Femto ant. gain	0 dBi
Scenario size	$90 \times 90m$	Femto ant. pattern	Omni
# Femtos (F)	9	UE ant. gain	0 dB
r_f	15 m	UE body loss	0 dB
Carrier frequency	2.0GHz	UE ant. pattern	Omni
Channel bandwidth	5MHz	UE noise figure	9 dB
$T_{subframe}$	5ms	UE per femto. (U)	8
Subcarriers	512	μ_p	90s
Subchannels (K)	8	UE distribution	uniform
DL OFDM symbols	39	TP_u^{req}	500kbps
Femto TX power	20dBm	Traffic model	full buffer


• A UE is considered to be in outage, when it fails to keep transmitting at a throughput larger than its demand (500kbps) for 4 seconds.

Results

- Transmit power and interference
 - Random: Uniform power distribution + random assignment
 - NLM: Uniform power distribution + Network Listening Mode
 - IM: Uniform power distribution + Interference Minimization

Stability and Interference Avoidance

Network Performance

 Network performance in terms of number of outages, number of connected users, and throughput.

Table 7.5: System-level simulation results (9 femtocell scenario)

Cell load	Scheme	Rnd	MNL	\mathbf{IM}	eRAP
$4~{ m users/femtocell} \ 50\%~{ m load}$	Outage	25 (9.92 %)	6 (2.38 %)	1 (0.40 %)	1 (0.40 %)
	Users	31.93	35.02	35.54	35.79
	Mbps	15.84	17.49	17.76	17.87
6 users/femtocell 75% load	Outage	67 (17.49 %)	56 (14.62 %)	25 (6.53 %)	3 (0.78%)
	Users	46.46	47.78	51.13	53.78
	Mbps	22.96	23.75	25.46	26.62
8 users/femtocell 100% load	Outage	121 (23.04 %)	118 (22.48 %)	96 (18.29 %)	17 (3.24%)
	Users	55.49	55.69	59.64	69.21
	Mbps	27.47	27.54	29.47	33.49

Conclusion

- Minimizing DL transmit power independently at femtocells allows for a better spatial reuse.
- Allocating different power levels to different subcarriers is much more efficient than uniformly distributing power among them.
- Minimizing DL transmit power per cell mitigates intercell interference.
- The proposed joint MSC, RB and power allocation scheme is able to converge to stable resource assignments.

Thank You!

Xiaoli Chu

xiaoli.chu@kcl.ac.uk