

Optimization of RRU/UE Pairs for Multi-Point to Multi-UE Coordinated (MP2MUC) Transmissions

Yongzhao Li, Simon Armour and Joe McGeehan 14th December 2011, London UK

- Sackground and problems
- Multi-Point Multi-UE coordinated (MP2MUC) transmission framework
- * Time-Frequency-Synchronization (TFS) constraint assisted cooperative partners selection
- Conclusions
- Ongoing and future work

Background and problems

- Features of IMT-Advanced Cellular Networks
 - Low-cost, high-efficiency
 - High mobility and roaming
 - Target peak data rates: 100 Mbps 1 Gbps (mobility)
 - Improved cell-edge performance
- Geometrically distributed base station (DBS) is a representative of IMT-advanced cellular networks.
- Cooperative transmission by:
 - multiple mobile terminals
 - Multiple distributed radio heads

Background and problems

- Enhanced MIMO is considered as an effective physical-layer technique to obtain **cooperative gain**
 - Multi-user MIMO
 - Cooperative (Virtual) MIMO
 - Cooperative beamforming/precoding
 - CoMP: Coordinated Multi-Point transmission /reception (3GPP)
 - Network MIMO (IEEE)
- Common characteristic amongst all these is the adoption of **cooperative transmission**.

- The prerequisite for a successful cooperative transmission is the optimization of cooperative partners:
- Various prior art (but not all consider both ends of the link):
 - Location-based partner selection
 - Greedy partner selection
 - Auction-theoretic-based partner selection.
 - Instantaneous-channel-quality partner selection
 - Energy-based partner selection

Background and problems

Existing Problems

- MP2MUC has not received much attention in the literature
- Time-frequency synchronization
 - Differently geometrically distributed RRUs and Ues
 - Multiple UEs and RRUs expands the problem
- UEs' burden and complexity...
- Objective
 - Low UE-complexity optimization of cooperative partners algorithms for MP2MUC transmissions taking into account synchronisation limitations

MP2MUC transmission framework

Typical uplink MP2MUC transmission

MP2MUC transmission framework

Equivalent virtual MIMO channel model for an RRU/UE pair

MRRUs

N+1 UEs

Amplify and Forward (AF) factor

$$x_n = \frac{g_n}{\sqrt{|g_n|^2 + s_n^2}}$$

Equivalent non-direct link gain

 $\hat{\mathbf{h}}_{m,n} = x_n \mathbf{h}_{m,n}$

Equivalent overall MIMO channel gain

$$\mathbf{H} = \begin{bmatrix} \mathbf{h}_{1,0} & \widehat{\mathbf{h}}_{1,1} & \widehat{\mathbf{h}}_{1,2} & \cdots & \widehat{\mathbf{h}}_{1,N} \\ \mathbf{h}_{2,0} & \widehat{\mathbf{h}}_{2,1} & \widehat{\mathbf{h}}_{2,2} & \cdots & \widehat{\mathbf{h}}_{2,N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{h}_{M,0} & \widehat{\mathbf{h}}_{M,1} & \widehat{\mathbf{h}}_{M,2} & \cdots & \widehat{\mathbf{h}}_{M,N} \end{bmatrix}$$

Major considerations

- Collaboration between both multiple UEs and multiple RRUs is considered
- *Time-frequency synchronization constraint* is adopted as the prerequisite criteria
- Optimization is mainly implemented by the BBU, resulting in a decrease in UE-complexity

Two-step optimization

MP2MUC oriented time-frequency synchronization strategy

Doppler frequency offset compensation for a 2RRU/2UE system Exact synchronization condition

$$\begin{cases} f_{d11} - x_1 = f_{d21} - x_2 \\ f_{d12} - x_1 = f_{d22} - x_2 \end{cases}$$

Equivalent matrix expression

$$\boldsymbol{A}\boldsymbol{x} = \boldsymbol{F} \quad \boldsymbol{A} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$
$$\boldsymbol{F} = \begin{bmatrix} f_{d11} - f_{d21} \\ f_{d12} - f_{d22} \end{bmatrix} = \begin{bmatrix} f_{d11} & f_{d12} \\ f_{d21} & f_{d22} \end{bmatrix}^T \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Error relaxation

 $A\mathbf{x} = \mathbf{F} + \mathbf{D}$ $\mathbf{D} = [d_1, d_2]^T$

Formulated problem

$$\min_{\mathbf{x}} \left(\|\boldsymbol{D}\|^2 \right) = \min_{\mathbf{x}} \left(\|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{F}\|^2 \right)$$

s.t.
$$\max(|\boldsymbol{d}_1|, |\boldsymbol{d}_2|) \le \delta$$

MP2MUC oriented time-frequency synchronization strategy

- The adoption of relaxation constraint can increase the probability of successful synchronization
- The computation of optimal compensation values is accomplished in the BBU; hence, there is no burden for the UEs
- By modifying the corresponding parameters a similar time synchronization algorithm can be easily obtained

MP2MUC oriented time-frequency synchronization strategy

- Differences between Time and Frequency Offset problems:
 - A tolerable residual time offset is allowed in timing synchronization without any relaxation, due to the adoption of a guard interval.
 - If the maximum residual time offset of the branches is less than $T_g \tau_{max}$, no extra time compensation is needed.

Network layout

 $f_c = 2 \text{ GHz}$ $\Delta f = 15 \text{ kHz}$ v=30~200 km/s

Tolerable RFO=0.01

CP=4.7 µs

τ_{max}=3.0 μs

Tolerable RTO=1.7 µs

- Cooperative RRU₁ RRU₇
- Cooperative $UE_1 UE_2 UE_3$

An example of two-step optimization of RRU/UE pairs

Initial set of optional RRU/UE pairs

$\begin{array}{c} (1) \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0.1} \ @ \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,2} @ \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,3} \\ @ \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,2} \ @ \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,3} \ @ \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,2,3} \ @ \ \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,2.3} \\ \end{array}$

After TFS constraint selection

 $\begin{array}{c} \textcircled{1} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0.1} \ \textcircled{2} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,2} \textcircled{3} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,3} \\ \textcircled{4} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,2} \ \textcircled{5} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,3} \ \textcircled{6} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,2,3} \ \textcircled{7} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,2.3} \\ \end{array}$

After channel energy constraint selection

 $\begin{array}{c} \textcircled{1} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0.1} \ \textcircled{2} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,2} \textcircled{3} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,3} \\ \textcircled{4} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,2} \ \textcircled{5} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,3} \ \textcircled{6} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,2,3} \ \textcircled{7} \mathsf{RRU}_{1,7} / \mathsf{UE}_{0,1,2.3} \\ \end{array}$

* For simplicity, only multi-RRU/multi-UE pairs are shown in this slide and RRU selection fixed based on

location

Performance comparison for Multi-point/Multi-UE pairs

A comparison among all 2RRU/2UE pairs

 $RRU_{1.7} / UE_{0.1}$ Pair #1: RRU_{1,7} / UE_{0,2} Pair #2: Pair #3: $RRU_{1.7} / UE_{0.3}$

Pair #1 and Pair #2 are discarded after two-step optimization

Performance comparison for Single-point/Multi-UE pairs

Better performance with lower UE-complexity

Performance comparison for Multi-point/Single-UE pairs

Conclusions

- Applicable for collaboration between both multiple UEs and multiple RRUs (MP2MUC)
 - Compatible for SP2MUC, MP2SUC and SP2SUC
- A possible solution for the time-frequency synchronization in MP2MUC
 - Failed RRU/UE pairs (in terms of synchronization) can be discarded as soon as possible
- Low UE-complexity
- Easy extension to cooperative handoff

Ongoing and future work

- High-efficient handshaking protocol design
- TFS related work
 - Different optimization solving approaches
 - The statistical distribution of Doppler/time offset
 - The statistical analysis of successful synchronization
 - Selection of target function
 - Optimization of constraint condition
- Incorporation into joint multi-D resource allocation
 ...

This work is a part of the UK-China Science Bridge grant awarded by EPSRC

MP2MUC, Multi-Point to Multi-User Coordination

Refer to RRU as a transmission point

An application in cooperative handoff

