Channel Estimation of LTE Downlink in High Speed Environment

Xuewu Dai
Dept. of Electronic and Electrical Engineering, UCL
Dept. of Engineering Science, University of Oxford
Email: xuewu.dai@eng.ox.ac.uk

Yang Yang (WiCO)
John Mitchell (UCL)
Outline

1. Introduction
2. Channel model & LTE OFDM reception
3. Extended Kalman Filter (EKF)
 - augmented state space model
 - EKF for channel estimation
 - EKF for channel interpolation
4. Implementation consideration
5. Simulation results
6. Summary
Motivation

• Future network aiming at improved mobility and certain QoS guarantees.
• within current LTE specifications, the description of UE speed is <120kmph
• LTE at velocity up to 350kmph is desired.
• Challenges in high-mobility applications (e.g. high speed train)

 low sensitivity to high speed (the Doppler effect)

 fast switch
Wireless channels in high speed environment

Time-varying channel transfer function

\[g(\tau) = \sum_{n=1}^{R} \alpha_n \cdot \delta(\tau - \tau_n) \]

(b) low Delay Spread and high

Ref: Muhammad Saad Akram, *Pilot-based Channel Estimation in OFDM Systems*, Nokia Mobile Phones
QAM system and channel estimation

represented as a baseband channel model
2. LTE reception and Channel model

Pilot-symbol assisted modulation (PSAM) in LTE/OFDM

- Known OFDM symbol, so-called pilots or reference symbols are inserted into the data stream
- Three kind of Time-Frequency allocation of pilot symbols: block pilot, pilot subcarriers and scattered pilots

LTE downlink frame structure with scattered pilots
2. LTE reception and Channel model

Pilot-aided channel estimation
1. Channel estimation at the pilot symbol location
2. Time-domain interpolation
3. Frequency-domain interpolation
2. Channel model and LTE reception

• 2.1 Multi-path Time-varying channel model

\[g(t, \tau) = \sum_{l=0}^{L-1} \alpha_l(t) \delta(\tau - \tau_l) \]

Channel Impulse Response (CIR)

\[g_k = [g_{k,0} \ g_{k,1} \ \cdots \ g_{k,L-1}]^T \]

Channel Frequency Response (CFR)

\[\bar{h}_k = [h_k[1] \ h_k[2] \ \cdots \ h_k[N]]^T \]

\[h_{k+1,n} = a_n h_{k,n} + \nu_{k,n} \]

• An AR model describes the time variation of \(h_k[n] \)
• \(h_k[n] \): channel attenuation to be estimated at the k-th OFDM symbol and at n-th subcarrier.
2.2 LTE OFDM reception

The received signal:
\[y_k = X_k h_k + w_k \]

\[X_k = \text{diag}(x_k) = \begin{bmatrix} x_{k,1} & 0 & 0 & \ldots & 0 \\ 0 & x_{k,2} & 0 & \ldots & 0 \\ 0 & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & x_{k,N_p} \end{bmatrix} \]

- LTE OFDM Channel equaliser:
\[\hat{x}_{k,n} = y_{k,n} / h_{k,n} \]

- Goal of channel estimation:
\[\arg \min_h \sum_k \| x_k - y_k \cdot h_k \|_2 \]

- Key issue: how to get the right value of \(h_{k,n} \)
3. Extended Kalman Filter (EKF) for LTE channel estimation

\[
\begin{align*}
 h_{k+1} &= A_k h_k + v_k \\
 y_k &= X_k h_k + w_k
\end{align*}
\]

- \(h_k \) is the unknown CFR
- \(A_k \) is the parameters representing the time correlation coefficients of CFR
- \(V_k \) represents the channel modelling error
- \(W_k \) is the noise in the channel
- Estimate \(h_k \) and \(A_k \) from the received \(y_k \) (fully known) and the transmitted \(X_k \) (partially known at pilot location only)
Augmented model

- A non-linear problem:

 to simultaneously estimate both h_k and A_k

 $$
 \begin{align*}
 a_{k+1} &= a_k + \epsilon_k \\
 h_{k+1} &= A(a_k)h_k + v_k \\
 y_{k+1} &= X_k h_k + w_k
 \end{align*}
 $$

 $$
 z_k = \begin{bmatrix} a_k^T & h_k^T \end{bmatrix}^T
 $$

 $$
 \begin{align*}
 z_{k+1} &= f(z_k) + u_k \\
 y_k &= \begin{bmatrix} 0_{1 \times N_A} & X_k \end{bmatrix} z_k + w_k
 \end{align*}
 $$

 and

 $$
 f(z_k) = \begin{bmatrix} a_k \\
 A(a_k)h_k \end{bmatrix}
 $$

 linearisation

 $$
 \begin{align*}
 z_{k+1} &= F_k z_k + u_k \\
 y_k &= \begin{bmatrix} 0 & X_k \end{bmatrix} z_k + w_k
 \end{align*}
 $$

 and

 $$
 F_n = \begin{bmatrix} I_{N_A} & 0 \\
 \hat{H}_{n|n} & \hat{A}_{n|n} \end{bmatrix}
 $$

A joint state and parameter estimation.
EKF for channel estimation

1. Prediction: Estimate a priori \(k \)-th CFR \(\hat{h}_k \) from \((k-1) \)-th channel estimation \(\hat{h}_{k-1} \) before receiving a OFDM symbol.

2. Correction: Correct the a priori \(k \)-th CFR \(\hat{h}_k \) by using the received OFDM symbol to get a better a posteriori \(k \)-th CFR \(\hat{h}_k \).
EKF for channel interpolation
a decision-directed approach

For the pilot symbol, the transmitted symbol x_k is known, use x_k for channel estimation.

For the data symbol, the transmitted symbol x_k is unknown, use the decoded \hat{x}_k for channel estimation.
4. Implementation consideration

• **Initialisation: by Least Squares Estimation**

\[
\hat{h}_{0,LS} = (X_0^H X_0)^{-1} X_0^H y_0
\]

\[
= \left[\frac{y_{0,1}}{x_{0,1}}, \frac{y_{0,2}}{x_{0,2}}, \ldots, \frac{y_{0,N_p}}{x_{0,N_p}} \right]
\]

Selection of the covariance matrices for channel (measurement) noise W_k

\[
\sigma_w^2 = \frac{P_{tx}}{10^{SNR/10}}
\]
5. Simulation results

1. Channel configuration:
 a rural area channel model defined by 3GPP

2. 512 subcarriers of which 300 are for data transmission.
3. Two speeds of user equipment (UE) 50 and 200 km/h
4. SNR varying from 0 to 40 dB at a step size of 5 dB.
5. Repeated 20 times (20 runs) at each SNR
Channel estimation Error

Left: by the EKF; right: by the least square estimation
Mean square estimation error

Average Estimation Errors v.s. SNRs (200km/h)

Magnitude of Estimation Errors

SNRs (dB)

LS -200km/h
EKF -200km/h
BER performances

- Left: 50km/h;
- the EKF interpolation filter improved the LS
- In Particular, a SNR gain up to 8 dB obtained for certain BERs (e.g. 0.002) at high-velocity.

Right: 200km/h
6. Summary

- The time-varying radio channel is modeled as an AR process presented as an state space form.
- An extended Kalman filter is developed for both
 1. channel estimation at pilot symbols
 2. interpolation at data symbols
- A significant improvement of BER performance
- Future work for further improvement: initialised by MMSE, etc.
 error propagation in decision-directed mode
Thanks & Questions ?