

Physical Layer Security for Two-Way Untrusted Relaying with Friendly Jammers

Rongqing Zhang and Lingyang Song School of Electrical Engineering and Computer Science Peking University, China Aug 24, 2010

Outline

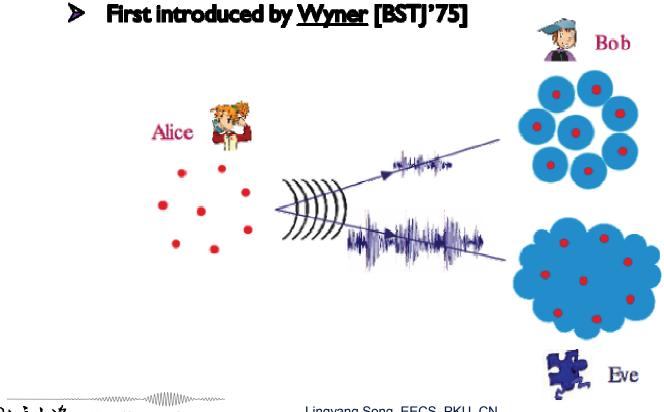
- Introduction
- System Model
- Analysis of Two-Way Untrusted Relaying with Friendly Jammers
- Simulation Results
- Conclusion

Outline

- **♦** Introduction
- ◆ System Model
- Analysis of Two-Way Untrusted Relaying with Friendly Jammers
- Simulation Results
- Conclusion

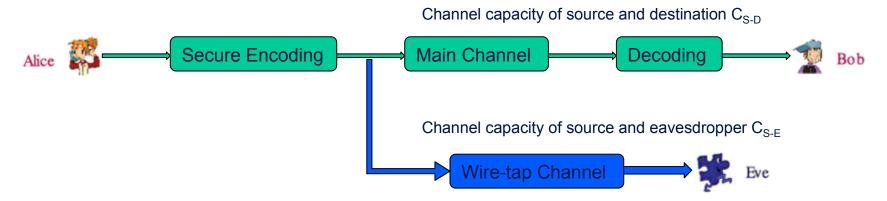
- Physical Layer Security
 - Wire-tap Channel
 - Secrecy Capacity (Secrecy Rate)
 - Approaches to Improve Secrecy Capacity

- Physical Layer Security
 - Wire-tap Channel



Physical Layer Security

Wire-tap Channel

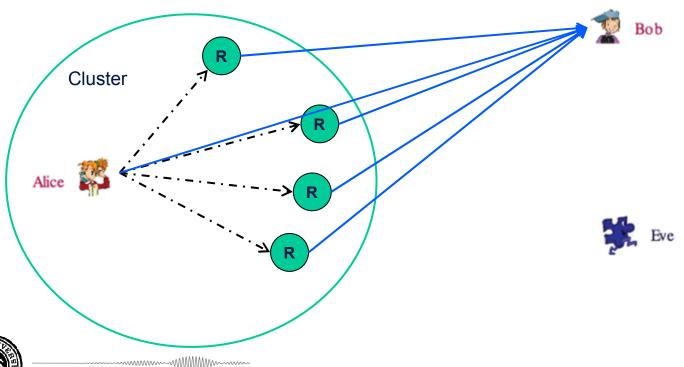


- The eavesdropper knows well the encoding scheme at the source and the decoding scheme at the destination.
- However, it is still available that there exists a positive rate of reliable communication between Alice and Bob if the wire-tap channel is worse than the main channel, for the eavesdropper can be kept ignorant solely by the greater noise present in its received signal.

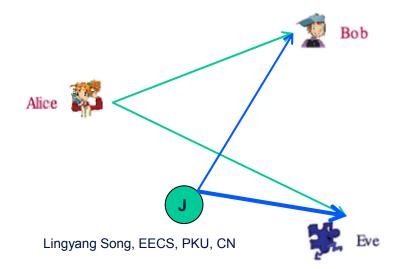
Physical Layer Security

- Secrecy Capacity
 - The <u>secrecy capacity</u> is define as the maximum rate of reliable information sent from the source to the intended destination in the presence of eavesdroppers.
 - The <u>secrecy rate</u> is an achievable rate that is smaller than the secrecy capacity.
 - Note that if the source-eavesdropper channel is less noisy than the source-destination channel, the perfect secrecy capacity will be zero. Thus, Some recent work has been proposed to overcome this limitation using relay cooperation.

- Physical Layer Security
 - Approaches to Improve Secrecy Capacity
 - Cooperative Relaying



- Physical Layer Security
 - Approaches to Improve Secrecy Capacity
 - Cooperative Jamming
 - The jamming signal can be as interference to both destination and eavesdropper, which makes both the wire-tap channel and the main channel getting worse. But if the interference effect on Bob is less than that on Eve, the secrecy rate will be improved.



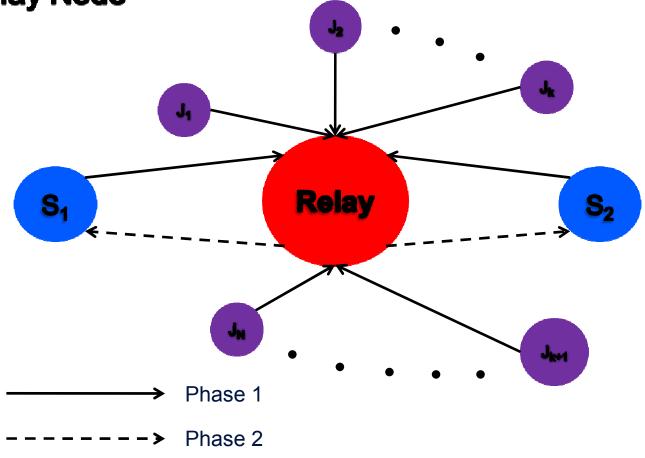
Outline

◆ Introduction

♦ System Model

- Analysis of Two-Way Untrusted Relaying with Friendly Jammers
- ◆ Simulation Results
- Conclusion

 Two-Way Relay Communication through an Untrusted Relay Node



Key Assumptions:

- All the nodes are equipped with only a single omni-directional antenna and operating in a half-duplex way.
- No direct communication link between the two source nodes.
- > The untrusted relay node, working in Amplify-and-Forward protocol, acts both as an essential relay and a malicious eavesdropper who also wants to eavesdrop the transmitted data coming from the sources.
- > The source nodes have perfect knowledge of the jamming signals transmitted by the friendly jammers, for they have paid for the service.

Secrecy Rate for S₁ and S₂:

$$C_{1}^{s} = \frac{W}{2} \left[\log \left(1 + \frac{p_{1}g_{S_{1},R}}{\sigma^{2} + K_{1} + \sum_{i} \frac{\sigma^{2}g_{J_{i},R}}{p_{r}g_{S_{2},R}} p_{i}^{J}} \right) - \log \left(1 + \frac{p_{1}g_{S_{1},R}}{\sigma^{2} + p_{2}g_{S_{2},R} + \sum_{i} g_{J_{i},R} p_{i}^{J}} \right) \right]^{+}$$

$$C_{2}^{s} = \frac{W}{2} \left[\log \left(1 + \frac{p_{2}g_{S_{2},R}}{\sigma^{2} + K_{2} + \sum_{i} \frac{\sigma^{2}g_{J_{i},R}}{p_{r}g_{S_{1},R}} p_{i}^{J}} \right) - \log \left(1 + \frac{p_{2}g_{S_{2},R}}{\sigma^{2} + p_{1}g_{S_{1},R} + \sum_{i} g_{J_{i},R} p_{i}^{J}} \right) \right]^{+}$$

- $(x)^+$ represents max(x, 0).
- \triangleright p_1 , p_2 , p_i^J denote the transmitting power of the sources S_1 , S_2 , and the friendly jammer J_1 , respectively.
- > In addition,

$$K_{1} = \frac{\sigma^{2} \left(p_{1} g_{S_{1},R} + p_{2} g_{S_{2},R} + \sigma^{2} \right)}{p_{r} g_{S_{2},R}} \qquad K_{2} = \frac{\sigma^{2} \left(p_{1} g_{S_{1},R} + p_{2} g_{S_{2},R} + \sigma^{2} \right)}{p_{r} g_{S_{1},R}}$$

Outline

- ◆ Introduction
- ◆ System Model
- Analysis of Two-Way Untrusted Relaying with Friendly Jammers
- Simulation Results
- Conclusion

- **♦ A Special Case without Jammers**
- Game between Sources and Friendly Jammers

- A Special Case without Jammers
 - Secrecy Rate for S₁ and S₂ in This Special Case:

$$\tilde{C}_{1}^{s} = \frac{W}{2} \left[\log \left(1 + \frac{p_{1}g_{S_{1},R}}{\sigma^{2} + K_{1}} \right) - \log \left(1 + \frac{p_{1}g_{S_{1},R}}{\sigma^{2} + p_{2}g_{S_{2},R}} \right) \right]^{+}$$

$$\tilde{C}_{2}^{s} = \frac{W}{2} \left[\log \left(1 + \frac{p_{2}g_{S_{2},R}}{\sigma^{2} + K_{2}} \right) - \log \left(1 + \frac{p_{2}g_{S_{2},R}}{\sigma^{2} + p_{1}g_{S_{1},R}} \right) \right]^{+}$$

- A Special Case without Jammers
 - Existence of Non-zero Secrecy Rate
 - ightharpoonup We can prove that under the power constraints $\left\{\,p_2 \le p_{
 m max}\,
 ight.$, there exists at least one pair of (p_r, p_1, p_2) that satisfies

s
$$egin{cases} p_1 \leq p_{\max} \ p_2 \leq p_{\max} \ , \ ext{there exists} \ p_r \leq p_{\max} \end{cases}$$

$$P(\tilde{C}_{1}^{s} > 0, \tilde{C}_{2}^{s} > 0) = P(K_{1} < p_{2}g_{S_{2},R}, K_{2} < p_{1}g_{S_{1},R})$$

$$= P\left(p_{r} > \max\left\{\frac{K}{p_{2}g_{S_{2},R}^{2}}, \frac{K}{p_{1}g_{S_{1},R}^{2}}\right\}\right) > 0$$

$$K = (p_1 g_{S_1,R} + p_2 g_{S_2,R} + \sigma^2)\sigma^2$$

which actually indicates that a non-zero secrecy rate in the two-way relay channel is indeed available.

- A Special Case without Jammers
 - Optimal Transmitting Power Allocation to Maximize the Secrecy Rate
 - We formulate the problem subject to the individual secrecy rate constraints and power constraints as

$$\max \tilde{C}^{s} = \max \sum_{k=1}^{2} \tilde{C}_{k}^{s}$$

$$\text{s.t.} \begin{cases} \tilde{C}_{1}^{s} > 0, \tilde{C}_{2}^{s} > 0 \\ p_{1} \leq p_{\text{max}}, p_{2} \leq p_{\text{max}}, p_{r} \leq p_{\text{max}} \end{cases}$$

- A Special Case without Jammers
 - Optimal Transmitting Power Allocation to Maximize the Secrecy Rate
 - > After further calculation, we can get the following results:
 - When maximizing the secrecy rate, the relay should always transmit with the maximum power, i.e., $p_{r_opt} = p_{\max}$
 - We define

$$\tilde{F}(p_r, p_1, p_2) \Box \frac{\left(1 + \frac{p_1 g_{S_1, R}}{\sigma^2 + K_1}\right) \left(1 + \frac{p_2 g_{S_2, R}}{\sigma^2 + K_2}\right)}{\left(1 + \frac{p_1 g_{S_1, R}}{\sigma^2 + p_2 g_{S_2, R}}\right) \left(1 + \frac{p_2 g_{S_2, R}}{\sigma^2 + p_1 g_{S_1, R}}\right)}$$

A Special Case without Jammers

 Optimal Transmitting Power Allocation to Maximize the Secrecy Rate

The Secrecy Rate
$$\begin{cases} p_{1_opt} = \begin{cases} p_1^*, & \text{if } p_1^* \in (0, p_{\max}) \\ p_{\max}, & \text{otherwise} \end{cases} \\ p_{2_opt} = p_{\max} \end{cases}$$

$$\textit{where } p_1^* \textit{ is the solution of } \frac{\partial \tilde{F}\left(p_{\max}, p_1, p_{\max}\right)}{\partial p_1} = 0.$$

$$\begin{cases} p_{1_\textit{opt}} = p_{\max} \\ p_{2_\textit{opt}} = \begin{cases} p_2^*, & \textit{if } p_2^* \in (0, p_{\max}) \\ p_{\max}, & \textit{otherwise} \end{cases}$$

$$\begin{cases} p_{2_opt} = \begin{cases} p_2^*, & \text{if } p_2^* \in (0, p_{\text{max}}) \\ p_{\text{max}}, & \text{otherwise} \end{cases}$$

where p_2^* is the solution of $\frac{\partial F(p_{\text{max}}, p_{\text{max}}, p_2)}{\partial p_2} = 0$. If $g_{S_1,R}=g_{S_2,R}$, we have that $\begin{cases} p_{1_opt}=p_{\max} \\ p_{2_opt}=p_{\max} \end{cases}$

$$\int p_{2_opt} = p_{\max}$$

- Game between Sources and Friendly Jammers
 - Stackelberg type of game between Sources and Jammers
 - Here we consider the two sources as two buyers who want to optimize their secrecy rates, while the cost paid for the "service", i.e., jamming power p_i^J , $i \in \mathbb{N}$, should also be taken into consideration.
 - Also we employ the pricing scheme to the payment of the two sources. For simplicity, here we mainly consider linear pricing scheme.

- Game between Sources and Friendly Jammers
 - Source Side Game
 - > For the source side, we define the utility function as

$$U_s = a\left(C_1^s + C_2^s\right) - M$$

where $\,\mathcal{Q}\,$ is a positive constant representing the gain per unit rate, and $\,M\,$ is the cost to pay for the friendly jammers.

 \blacktriangleright Here we have $M=\sum m_i\,p_i^J$, where m_i is the price per unit power paid for the friendly jammer i by the sources.

- Game between Sources and Friendly Jammers
 - Source Side Game
 - > The source side game can be expressed as

$$\max U_{s} = \max \left(a \left(C_{1}^{s} + C_{2}^{s} \right) - M \right)$$
s.t.
$$\begin{cases} C_{1}^{s} > 0, C_{2}^{s} > 0 \\ 0 \le p_{i}^{J} \le p_{\max}, p_{r} = p_{\max}, fixed \ p_{1}, p_{2} \end{cases}$$

- Game between Sources and Friendly Jammers
 - Friendly Jammer Side Game
 - For the friendly jammer side, we define the utility function of each friendly jammer as $U_i=m_i\left(p_i^J\right)^{c_i}, i\in \mathbf{N}$

where $c_i>1$ is a constant to balance the payment from the sources and the transmission of the jammer itself. With different values of \mathcal{C}_i , the jammers have different strategies for asking the price m_i .

Here the jamming power p_i^J is also a function of the vector of prices (m_1, m_2, \ldots, m_N) ,as the amount of jamming power that the sources will buy also depends on the prices that the friendly jammers ask.

- Game between Sources and Friendly Jammers
 - Friendly Jammer Side Game
 - > The friendly jammer side game can be expressed as

$$\max_{m_i} U_i, i \in \mathbb{N}$$

> The optimal asking price for jammer i can be given as

$$m_{i_opt} = m_i^* \left\{ \sigma^2, g_{S_1,R}, g_{S_2,R}, \left\{ g_{J_i,R} \right\} \right\}$$

- Game between Sources and Friendly Jammers
 - Distributed Algorithm
 - > From above, we have

$$m_{i} = I_{i}\left(\mathbf{m}\right) = -\frac{\left(p_{i_opt}^{J}\right)}{c_{i}\frac{\partial p_{i_opt}^{J}}{\partial m_{i}}}$$

where $\mathbf{m} = [m_1, m_2, ..., m_N]^T$, $p_{i_opt}^J$ is a function of \mathbf{m} , and $I_i(\mathbf{m})$ is the price update function for friendly jammer i.

> The distributed algorithm can be expressed in a vector form as

$$\mathbf{m}(t+1) = \mathbf{I}(\mathbf{m}(t))$$

where $\mathbf{I} = \begin{bmatrix}I_1, I_2, ..., I_N\end{bmatrix}^T$, and the iteration is from time t to time t+1.

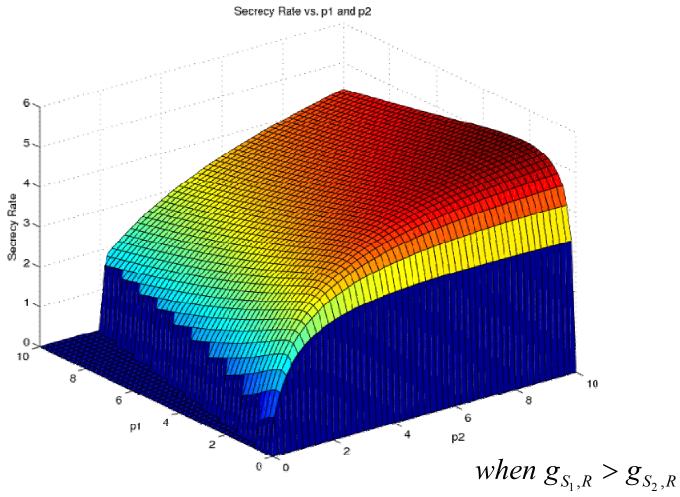
Outline

- ◆ Introduction
- ◆ System Model
- Analysis of Two-Way Untrusted Relaying with Friendly Jammers
- **♦ Simulation Results**
- Conclusion

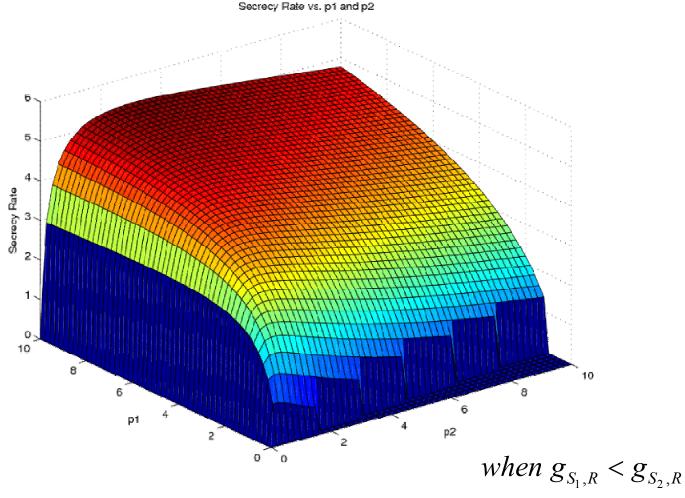
Simulation Conditions

- The sources S_1 , S_2 , and the malicious relay R are located at the coordinate (-1,0), (1,0), and (0,0), respectively.
- \triangleright The maximum power constraint p_{max} is 10.
- \triangleright The noise variance is $\sigma^2 = 0.01$.
- > Rayleigh fading channel is assumed, where the channel gain consists of the path loss and the Rayleigh fading coefficient.
- \triangleright Here we select a = 1 for the source side utility.

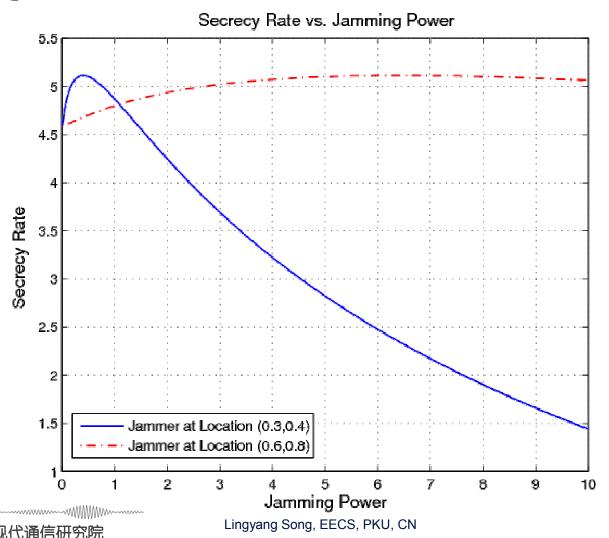
The Special Case without Jammers



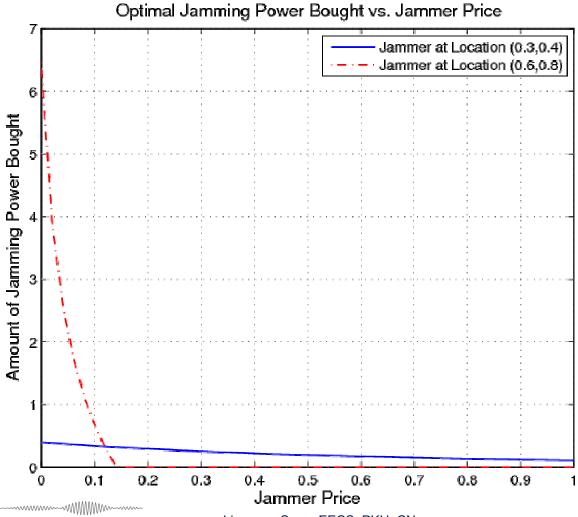
The Special Case without Jammers



Single-Jammer Case



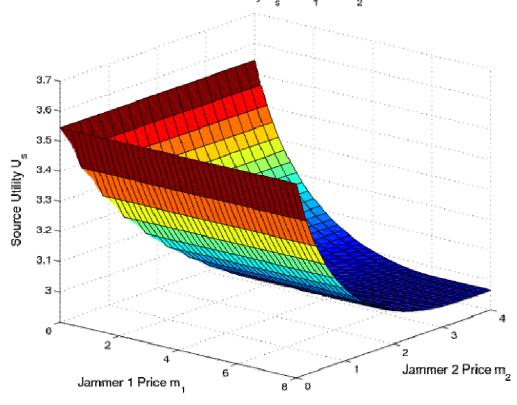
Single-Jammer Case



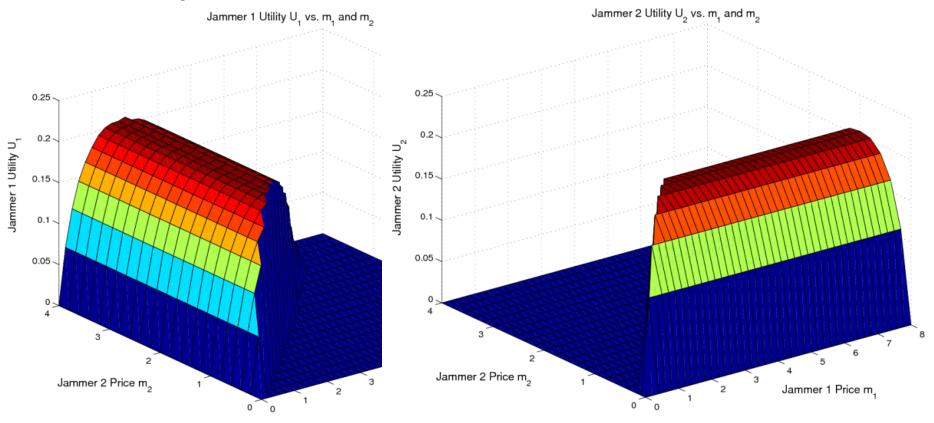
Multiple-Jammer Case

➤ We consider two jammers which are located at (0.3,0.4) and (0.5,0.5), respectively. The sources' utility U₈, the first jammer's utility U₁, and the second jammer's utility U₂ as functions of both jammers' prices are shown as follows.

Source Utility U₂ vs. m₄ and m₅



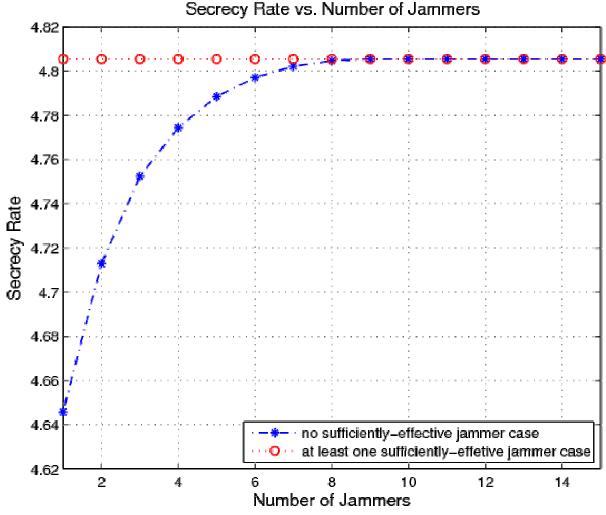
Multiple-Jammer Case



Multiple-Jammer Case

Here we treat jammer i as a sufficiently-effective one if it can $p_i^J \ p_i^J \in \left(0, p_{\max}\right]$ offer a power ,

making the secrecy rate improved up to the maximal value. In another word, no sufficiently-effective jammer means that the sources could not achieve the maximal secrecy rate with only one jammer's help.



Distributed Solution vs. Centralized Solution of Secrecy

Rate Centralized and Distributed Solution of Secrecy Rate vs. the Price Factor a 4.8 4.75 4.7 Secrecy Rate 4.65 4.6 4.55 Centralized Solution Distributed Solution 4.5 2 3 4.5 1.5 2.5 3.5 5 a

Outline

- ◆ Introduction
- System Model
- Analysis of Two-Way Untrusted Relaying with Friendly Jammers
- ◆ Simulation Results
- Conclusion

Conclusion

- Reinforce security in physical layer seems to be a very effective approach to further protect wireless networks.
- We therefore investigated the physical layer security for two-way relay communications with untrusted relay and friendly jammers.
- As a simple case, a two-way relay system without jammers is first studied, and an optimal power allocation vector of the sources and relay nodes is found.
- We then investigated the secrecy rate in the presence of friendly jammers. Furthermore, we
 defined and analyzed a Stackelberg type of game between the sources and the friendly jammers
 to achieve the optimal secrecy rate in a distributed way.
- From the simulation results, we can get the following:
 - A non-zero secrecy rate for two-way relay channel is indeed available.
 - The secrecy rate can be improved with the help of friendly jammers, and there is an optimal solution of jamming power allocation.
 - There is also a tradeoff for the price a jammer sets, and if the price is too high, the sources will turn to buying from others.
 - For the game, we can see that the distributed algorithm and the centralized scheme have similar performances, especially when the gain factor a is sufficiently large.

References

- Rongqing Zhang, Lingyang Song, Zhu Han, Bingli Jiao, and Merouane Debbah, "Physical layer security for two way relay communications with friendly jammers", accepted by IEEE GLOBECOM'2010.
- Rongqing Zhang, Lingyang Song, Zhu Han, and Bingli Jiao, "Physical layer security for two-way untrusted relaying with friendly jammers", submitted to IEEE Trans. on Wireless Communications.
- Rongqing Zhang, Lingyang Song, Zhu Han, and Bingii Jiao, "improve physical layer security in cooperative wireless network using distributed auction games" submitted to Infocom 2011.
- Rongqing Zhang, Lingyang Song, Zhu Han, and Bingli Jiao, "Improve physical layer security in cooperative wireless network using distributed auction games" submitted to IEEE Trans. on Networking.
- Jingchao Chen, Lingyang Song, Zhu Han, and Bingli Jiao, "Joint relay and jammer selection for secure two-way relay networks", in preparation for IEEE Transactions on Information Forensics and Security.

THANKS FOR YOUR ATTENTION!

