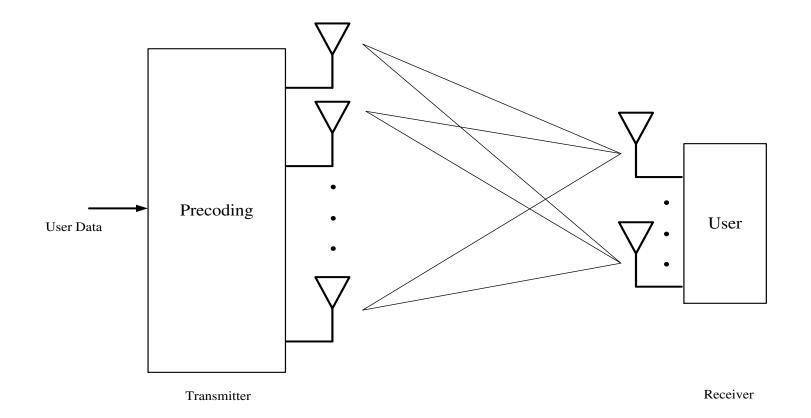
A Probabilistic Constraint Approach for Robust Transmit Beamforming with Imperfect Channel Information

Pei-Jung Chung School of Engineering and Electronics The University of Edinburgh

P.Chung@ ed.ac.uk


Motivation

• Transmit beamforming is a powerful technique for enhancing performance of wireless communication systems. Conventional approaches assume perfect channel state information at the transmitter, which is typically not available in practice.

• Existing robust designs focus on average or worst case performance. The former has severe consequences in the large error case, while the latter leads to an overall conservative performance.

• The probabilistic constraint approach maximizes the average signal-to-noise ratio (SNR) and takes the extreme conditions into account proportionally.

Multi-Input Multi-Output (MIMO) System

System Model

- Consider a single user system with N_t transmit antennas and N_r receive antennas.
- The signal s is spread over the precoding matrix C and transmitted through a flat fading channel H.
- The receive signal is given by

$$y = HCs + w$$

where \mathbf{w} represents an additive white Gaussian noise.

Design Criterion: SNR

- Signal-to-Noise Ratio (SNR) is selected as design criterion because of its
 - mathematical simplicity,
 - close relation to SER, BER and MMSE at receiver.
- Assuming *perfect* channel information at the receiver, the SNR from maximum ratio combining (MRC) is given by

$$\operatorname{SNR} = \frac{E_s}{N_0} \operatorname{tr} \{ \mathbf{C}^H \mathbf{H}^H \mathbf{H} \mathbf{C} \},$$

where E_s : signal energy, N_0 : noise power.

Imperfect Channel State Information (CSI)

- In the presence of prefect CSI, maximizing SNR leads to conventional one directional beamforming which allocates all power on the strongest eigenmode of H.
- In practice, only channel estimate $\hat{\mathbf{H}}$ is available,

 $\mathbf{H}=\hat{\mathbf{H}}+\mathbf{E}.$

The error matrix \mathbf{E} consists of i.i.d. complex normally distributed entries.

• Standard transmit beamforming degrades significantly!

Existing Robust Designs

- Conventional Stochastic Approach
 - use channel statistics (mean or covariance),
 - focus on average system performance,
 - pay no attention to extreme errors.
- Maximin Approach
 - consider deterministic errors,
 - optimize worst-case performance,
 - overall conservative performance.

Probabilistic Constraint Approach

- The probabilistic constraint approach is more flexible than the stochastic and worst case approaches.
- It maximizes overall performance while providing quality control at worst case.
- Challenges:
 - probabilistic constraint \Rightarrow deterministic one
 - computational efficiency

Probabilistic Constrained Optimization I

Our design leads to the following stochastic optimization problem:

 $\max_{\mathbf{C}} \mathbb{E}(SNR)$

subject to

$$\Pr{SNR \le \gamma_{th}} \le p_{out}$$

Power Constraint

* The received Signal-to-Noise Ratio at the receiver, SNR, is a random variable due to channel estimation errors.

Objective Function

• Assuming $\mathbf{H} = \hat{\mathbf{H}} + \mathbf{E}$, SNR is given by

$$f(\hat{\mathbf{H}}, \mathbf{E}) = \frac{E_s}{N_0} \operatorname{tr} \{ \mathbf{C}^H (\hat{\mathbf{H}} + \mathbf{E})^H (\hat{\mathbf{H}} + \mathbf{E}) \mathbf{C} \}.$$

• The objective function is the average SNR (with respect to \mathbf{E})

$$\mathbb{E}\left[f(\hat{\mathbf{H}}, \mathbf{E})\right] = \frac{E_s}{N_0} \operatorname{tr}\{\mathbf{U}_c \mathbf{D}_c \mathbf{U}_c^H (\mathbf{U}_h \mathbf{D}_h \mathbf{U}_h^H + \sigma_e^2 N_r \mathbf{I}_{N_t})\},\$$

where

$$\mathbf{C}\mathbf{C}^{H} = \mathbf{U}_{c}\mathbf{D}_{c}\mathbf{U}_{c}^{H}, \ \hat{\mathbf{H}}^{H}\hat{\mathbf{H}} = \mathbf{U}_{h}\mathbf{D}_{h}\mathbf{U}_{h}^{H}.$$

Objective Function (Cont'd)

- The average SNR can be maximized separately over the unitary matrix U_c and the diagonal matrix D_c = diag(d₁, d₂, ..., d_{Nt}).
- Inserting the optimal solution for \mathbf{U}_c with $\mathbf{U}_c^H \mathbf{U}_h = \mathbf{I}$, we obtain

$$\bar{f}(\mathbf{D}_c) = \frac{E_s}{N_0} \operatorname{tr} \{ \mathbf{D}_c(\mathbf{D}_h + \sigma_e^2 N_r \mathbf{I}_{N_t}) \}.$$

• $\overline{f}(\mathbf{D}_c)$ depends only on \mathbf{D}_c . The design becomes a power allocation problem.

Probabilistic Constraint

- In the presence of large errors, the system performance is controlled by keeping the probability that SNR becomes smaller than a pre-specified level γ_{th} low.
- Mathematically

$$\Pr\{f(\hat{\mathbf{H}}, \mathbf{E}) \le \gamma_{th}\} \le p_{\text{out}}, (1)$$

where $Pr{A}$ denotes the probability of the event A.

Reformulation of Probabilistic Constraint

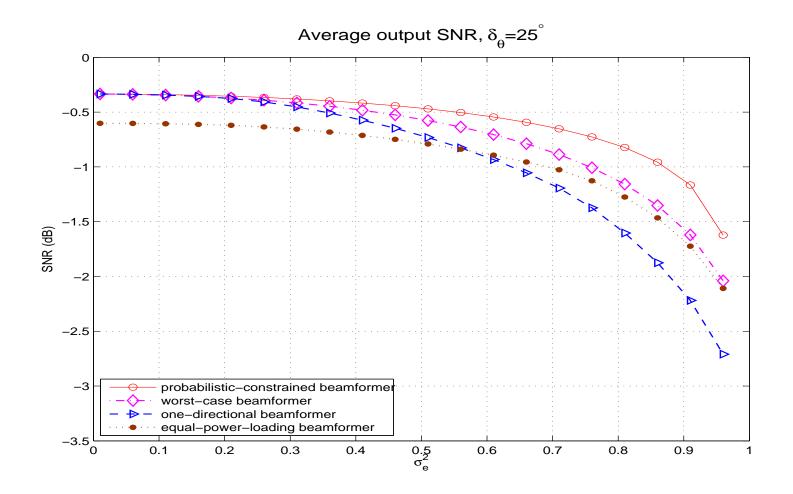
Proposition The probabilistic constraint (1) can be replaced by the following convex constraint

$$\prod_{i=1}^{N_t} \left(\frac{1}{d_i} \left[\frac{\bar{\gamma}/2}{1 + \delta_i/n_i} \right] \right)^{n_i/2} \le p_{\text{out}}.$$
 (2)

where δ_i represents the noncentrality parameter of $\chi^2_{n_i}(\delta_i)$ distribution and $n_i = 2N_r$. If (2) holds, then (1) holds.

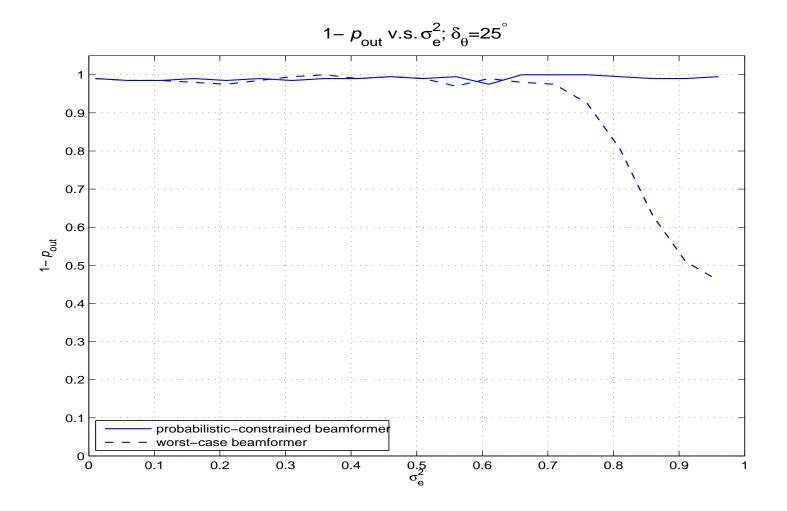
* With (2), the original stochastic optimization problem is transformed into a convex optimization problem.

Probabilistic Constrained Optimization II

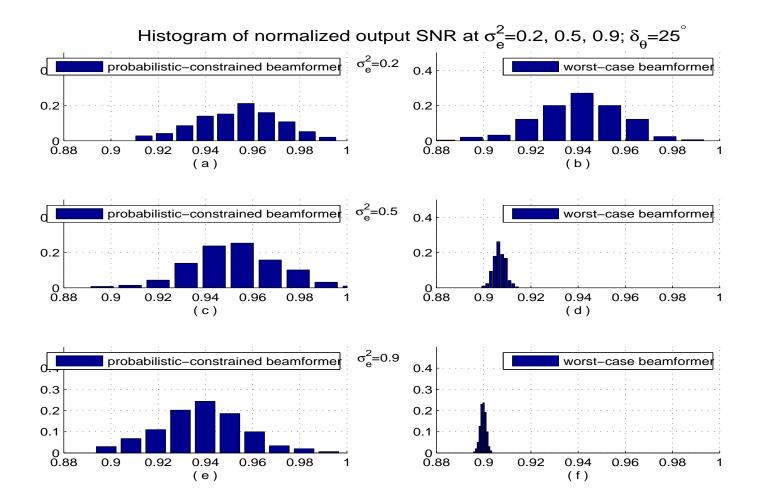

Having derived the compact expressions, our design can be formulated as

$$\max_{\mathbf{D}_{c}} \operatorname{tr} \{ \mathbf{D}_{c}(\mathbf{D}_{h} + \sigma_{e}^{2}N_{r}\mathbf{I}_{N_{t}}) \},$$

subject to
$$\prod_{i=1}^{N} \left(\frac{1}{d_{i}} \left[\frac{\bar{\gamma}}{2(1+\delta_{i}/n_{i})} \right] \right)^{n_{i}/2} \leq p_{\text{out}},$$
$$\operatorname{tr} \{ \mathbf{D}_{c} \} \leq 1, \qquad (3)$$
$$d_{i} \geq 0, \quad i = 1, \cdots, N_{t},$$


where $\bar{\gamma} = \gamma_{th} (\frac{E_s}{N_0} \sigma_e^2)^{-1}$ and (3) is the power constraint.

Simulation


- We consider a single-user MIMO system with $N_t = 4$ transmit antennas and $N_r = 3$ receive antennas.
- We also compare the proposed approach with 1. the conventional one-directional beamformer, 2. two-directional, 3. equal-power loading beamformer and 4. the worst case approach.
- The outage probability $p_{\rm out}$ is 10% and the normalized SNR threshold $\bar{\gamma}$ is 0.9. The error variance $0 \le \sigma_e^2 \le 1$.
- Correlated fading with fixed antenna spacing $d = 0.5\lambda$ and angle spread $\delta_{\theta} = 25^{\circ}$.

Average SNR vs. error variance σ_e^2 . Correlated fading with angular spread $\delta_{\theta} = 25^{\circ}$.

 $(1 - p_{out})$ vs error variance σ_e^2 . Correlated fading with angular spread $\delta_{\theta} = 25^{\circ}$.

Histogram of normalized SNR for $\sigma_e^2 = 0.2, 0.5, 0.9$. Correlated fading with angular spread $\delta_{\theta} = 25^{\circ}$.

Conclusions

- We applied the probabilistic constraint approach for transmit beamforming design in general MIMO systems.
- The proposed method maximizes the average SNR performance and guarantees robustness against channel estimation errors.
- The probabilistic constraint was transformed to a convex one. Computational complexity is the same as most robust designs.
- The proposed beamformer achieves the highest robustness and best system performance among existing robust designs.

References

- [1] P.-J. Chung, H. Du, J. Gondzio: A Probabilistic Constraint Approach for Robust Transmit Beamforming with Imperfect Channel Information, Proc. EUSIPCO 2009.
- [2] H. Du, P.-J. Chung: Robust Leakage-Based Transmit Beamforming with Probabilistic Constraint for Downlink Multi-User MIMO System, Proc. IEEE Workshop on Statistical Signal Processing 2009.
- [3] H. Du, P.-J. Chung: A probabilistic leakage-based beamforming assisted Alamouti code for downlink multi stream MU-MIMO system, ChinaCom 2010.
- [4] S. A. Vorobyov, Y. Rong, and A. B. Gershman, Robust adaptive beamforming using probabilisticconstrained optimization, Proc. IEEE SSP Workshop, 2005. (SIMO)
- [5] A. Pascual-Iserte, D.P. Palomar, A.I. Perez-Neira, and M. A. Lagunas, A robust maximin approach for MIMO communications with imperfect channel state information based on convex optimization,, IEEE Trans Signal Processing, vol. 54, no. 1, pp. 346-360, Jan 2006.