Capacity of Hybrid Cognitive Radio Networks

--A possible role of cognitive radio in B4G systems

Dr Xuemin Hong

Post-doctoral Research Associate

Joint Research Institute in Signal and Image Processing Electrical, Electronic and Computer Engineering School of Engineering & Physical Sciences Heriot-Watt University, Edinburgh, UK Phone: +44-131-4514187 Fax: +44-131-4514155 E-mail: <u>x.hong@hw.ac.uk</u> URL: <u>http://www.eps.hw.ac.uk/~xh29/</u>

Capacity of Hybrid Cognitive Radio Networks

UC4G Beijing Workshop, 23 Aug. 2010

OUTLINE

- 1. Introduction
- 2. Non-cooperative Hybrid CR Networks
- 3. Cooperative Hybrid CR Networks
- 4. Conclusions

1. Introduction

- Challenges in 4G and beyond 4G (B4G) radio access networks
 - Exploding traffic vs. Limited network capacity
 - Random traffic vs. Stable network capacity
 - Diverse traffic vs. Dedicated, reliable expensive network

Random traffic

3/26

A key cause of the above problems: spectrum availability

-- Cellular spectrum is licensed and is limited, fixed, and expensive!

Exploding traffic

Example of Cellular Spectrum Licensing

- UK 3G Spectrum Auction, 2000
 - Limited (140 MHz bandwidth), fixed (1900--2170 MHz), expensive (£22.5 billion)

	Auction Winners and Winning Bids				
	A	В	с	D	E
MHz spectrum	2 x 15	2 x 15	2 x 10	2 x 10	2 x 10
MHz Unpaired	5	0	5	5	5
Price Bidder	T/W	Vodafone	ΒT	121	Orange
Price Bid (£M)	4,385	5,964	4,030	4,004	4,095
£M/MHz paired	292	398	403	400	410

Capacity of Hybrid Cognitive Radio Networks

UC4G Beijing Workshop, 23 Aug. 2010

Spectrum Is A Scarce Resource

- More licensed cellular spectrum?
 - It will be expensive!
 - Most suitable spectrum has been allocated/licensed to different applications.
- Secondary spectrum and cognitive radio (CR)
 - A large portion of the spectrum is significantly underutilised.
 - CR networks can use underutilised spectrum as secondary spectrum without interfering with the incumbents (i.e., primary networks).

Capacity of Hybrid Cognitive Radio Networks UC4G Beijing Workshop, 23 Aug. 2010

Classification of CR Networks

- Interweave CR network practical, early CR system
 - Exploit temporal or spatial frequency voids white spaces/spectrum holes.
- **Overlay CR network** long term vision of CR system
 - Operate to keep the signal-to-interference-and-noise ratios (SINR) at primary receivers above a certain threshold.

Capacity of Hybrid Cognitive Radio Networks

UC4G Beijing Workshop, 23 Aug. 2010

Hybrid CR Networks for B4G

- Definition of hybrid CR networks: A network that integrates both dedicated licensed spectrum as well as secondary spectrum to serve the users.
- Secondary spectrum vs. Dedicated licensed spectrum
 - Wide bandwidth vs. Small bandwidth
 - Adaptable vs. Fixed
 - Inexpensive vs. Expensive
 - Low power vs. High power
 - Unreliable? vs. Reliable
- Hybrid CR networks can be the future architecture for B4G cellular networks.
 - Growing traffic \rightarrow Use secondary spectrum to expand capacity.
 - Random traffic \rightarrow "Borrow" secondary spectrum on demand.
 - Diverse traffic → High-cost, reliable licensed network for high-value services; Low-cost, less reliable CR network for low-value services.

Motivation for Capacity Analysis

- The purpose and importance of capacity analysis
 - Understand the performance limits of CR networks.
 - Provide basic guidelines for the planning and design of CR networks.
- Why capacity analysis of CR networks is different from conventional ones
 - Conventional wireless networks: intra-network (self) interference constraint
 - CR networks: inter-network interference constraint (protect primary systems)
 - Peak / Average /Outage interference power constraints
- Previous work: link capacity analysis
 - Consider a CR link.
 - Information-theory-oriented: provide guidelines for transmission scheme design.
- Our work: system capacity analysis
 - Consider multiple CR links, user distribution, and channel propagation.
 - Network-engineering-oriented: provide guidelines for network planning.

OUTLINE

- 1. Introduction
- 2. Non-cooperative Hybrid CR Networks
- 3. Cooperative Hybrid CR Networks
- 4. Conclusions

2. Non-cooperative Hybrid CR Networks

- System description
 - Separated PHY layers in the licensed band and the secondary band.
 - Dual-mode BSs and mobile users.
 - Users are served by either the licensed or secondary bands.

A Centralised CR Network

- System model
 - Primary user locations follow Poisson point distribution with certain density
 - A circular CR cell with a central base station (BS) and a radius *R*
 - Uniformly distributed secondary users
 - Time division multiple access (TDMA)
 - Channel model: Pathloss + Log-normal shadowing + Nakagami fading
 - Power control:
 - Peak interference power constraint
 - Opportunistic scheduling:
 - The BS choose one among M secondary users to communicate in each time slot.
 - Capacity as a random variable: "best effort"

Capacity vs. Primary Receiver Density

- Impacts of the primary receiver density on the capacity
 - Capacity has a large dynamic range.
 - Capacity is sensitive to primary receiver density.
 - Shadowing has limited impacts on the capacity distribution.

Benefit of Opportunistic Scheduling

- Impacts of the number of scheduled users *M* on the capacity
 - Increasing *M* can significantly increase the capacity.
 - Shadowing has limited impacts on the capacity distribution.
 - Capacity has a large dynamic range even with a large value of *M*.

Impacts of Fading

- Impacts of the Nakagami fading parameter *m* on the capacity
 - Small scale fading has trivial impacts on the capacity.
 - The reason is that the access channels and interference channels are assumed to have the same fading properties.

Example: TV and FMC Band Deployments

- DVB receiver density = $0.001/m^2$
- DVB receiver antenna gain = 18 dB
- DVB minimum SIR requirement: = 12 dB
- CR BS interference suppression gain = 10 dB

- Number of opportunistic scheduled users M = 20
- Channel model constants KA/KI = 1
- Error tolerance in a 8 MHz channel: 1%

OUTLINE

- 1. Introduction
- 2. Non-cooperative Hybrid CR Networks
- 3. Cooperative Hybrid CR Networks
- 4. Conclusions

3. Cooperative Hybrid CR Networks

- System description
 - Dual-mode mobile users establish local ad-hoc networks using the secondary spectrum.
 - All users communicate with the BS using only the licensed spectrum.
 - Indirect performance improvement through cooperative communication.

Advantages

- Can use short distance CR schemes.
- Obtain gains of cooperative communications.
- No modification required to the BSs
- Disadvantages
 - Complex
 - Users may be unwilling to cooperate.

17/26

Example: CR Assited Virtual MIMO—System Model

- Virtual MIMO is a promising cooperative scheme.
 - VAA: virtual antenna array
 - Group distributed antennas to cooperative arrays.
 - Exploit MIMO gains using virtual MIMO.
- System model
 - CR band: to form VAA
 - Licensed band: to communicate with BS
 - VAA radius: *R*
 - Primary exclusion region: *L*
 - Amplify-and-forward relaying
 - Primary user density λ_p
 - CR user density λ_c
 - Power control to guarantee minimum SINR for communications in the CR band.

Link Level Capacity (Virtual MIMO Uplink)

- As a function of licensed channel SINR
 - With large CR channel SINR, V-MIMO approaches real MIMO capacity.
 - Multiplexing gain is maintained with large relay channel SINR.

- As a function of CR channel SINR
 - With large relay channel SINR, V-MIMO approaches real MIMO capacity.
 - 13+ dB relay channel SINR needed for virtual MIMO to be "useful".

19/26

Capacity of Hybrid Cognitive Radio Networks

UC4G Beijing Workshop, 23 Aug. 2010

System Capacity of Cooperative Hybrid CR Networks

• System capacity (bits/Hz/s/m²) =

VAA link capacity (bits/Hz/s) imes Spatial density of VAA (m⁻²)

- Spatial density of CR-based virtual MIMO groups
 - Use physical interference models (Section 2.2)
 - The VAA density can be calculated as a function of
 - The tolerable interference I_{lim}
 - The VAA radius R
 - The primary exclusion region radius L
 - The minimum SINR requirement ρ_{cr}
 - The CR user density λ_c
 - The primary user density λ_p
- There exists complex tradeoffs among various system parameters.
- Optimisation techniques are used to calculate the maxium system capacity.

Capacity vs. Primary Receiver Density

- Impact of primary user density on the capacity of hybrid cooperative CR networks
 - Capacity is **insensitive** to the primary receiver density (left).
 - A major benefit compared with the random capacity of pure CR networks (right).

Capacity of Hybrid Cognitive Radio Networks

UC4G Beijing Workshop, 23 Aug. 2010

Capacity vs. Interference from Primary to CR Systems

- Impacts of the interference level from primary to CR systems on the capacity of hybrid cooperative CR networks
 - Capacity is **insensitive** to the interference level from primary networks.

Capacity vs. CR User Density

- Impact of CR user density on the capacity of hybrid cooperative CR networks
 - Capacity is very sensitive to the CR user density.

OUTLINE

- 1. Introduction
- 2. Non-cooperative Hybrid CR Networks
- 3. Cooperative Hybrid CR Networks
- 4. Conclusions

4. Conclusions

- The concept of hybrid CR networks has been proposed and its capacity studied.
- Non-cooperagtive CR networks
 - Provided analytical framework for capacity evaluation: useful for network planning.
 - The capacity gain is found to be sensitive to the properties of the primary network.
 - In principle, it is possible to deploy such CR networks in the TV band for short to medium range communications.
- Cooperative CR networks
 - Studied a cooperative hybrid CR network based on virtual MIMO.
 - Cooperative hybrid CR networks is found to have a major advantage in that the system capacity is insensitive to the properties of the primary network.

Related Journal/Book Publications

Book chapter

• X. Hong, C.-X. Wang, J. S. Thompson, and H.-H. Chen, "Capacity analysis of cognitive radio networks," in *Cognitive Radio Networks: Architectures, Protocols and Standards*, edited by Yan Zhang, Jun Zheng, and Hsiao-Hwa Chen, to be published by Auerbach Publications, CRC Press.

Journals

- X. Hong, C.-X. Wang, M. Uysal, X. Ge and S. Ouyang, "Capacity of hybrid cognitive radio networks with distributed VAAs," *IEEE Trans. Vehi. Technol.*, vol. 59, no. 7, Sept. 2010.
- C.-X. Wang, X. Hong, H.-H. Chen, and J. S. Thompson, "On capacity of cognitive radio networks under average interference power constraints," *IEEE Trans. Wireless Commun.*, vol. 8, no. 4, pp. 1620-1625, Apr. 2009.
- X. Hong, C.-X. Wang, H.-H. Chen, and Y. Zhang, "Secondary spectrum access networks: recent development on the spatial models," *IEEE Vehi. Technol. Mag.*, vol. 4, no. 2, pp. 36-43, June 2008.
- X. Hong, Z. Chen, C.-X. Wang, S. A. Vorobyov, and J. S. Thompson, "Interference cancellation for cognitive radio networks," *IEEE Vehi. Technol. Mag.*, vol. 4, no. 4, Nov. 2009.
- C.-X. Wang, H.-H. Chen, **X. Hong**, and M. Guizani, "Cognitive radio network management: tuning in to real time conditions," *IEEE Vehi. Technol. Mag.* vol. 3, no. 1, pp. 28-35, Mar. 2008.

Thank you for your attention! Questions?

Capacity of Hybrid Cognitive Radio Networks

UC4G Beijing Workshop, 23 Aug. 2010

