UK-China Science Bridges: R&D on 4G Wireless Mobile Communications

Research on Wireless Communications at Heriot-Watt University

Dr Cheng-Xiang Wang

Heriot-Watt University, Edinburgh, UK

School of Engineering & Physical Sciences Electrical, Electronic and Computer Engineering

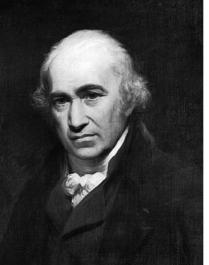
The Edinburgh Research Partnership (ERP) in Engineering and Mathematics Joint Research Institute for Signal and Image Processing (JRI-SIP)

Phone: +44-131-4513329

Fax: +44-131-4514155 E-mail: <u>cheng-xiang.wang@hw.ac.uk</u> URL: <u>http://www.ece.eps.hw.ac.uk/~cxwang/</u>

Outline

- I. Research Environment
- II. Research Areas and Projects
- III. Suggested Collaboration Topics for Collaborations

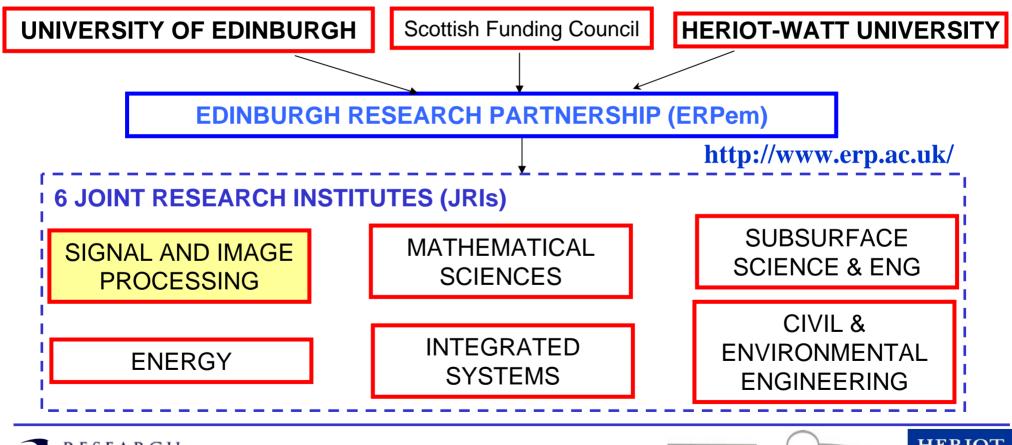


I. Research Environment

- Heriot-Watt University (赫瑞·瓦特大学):
 - Eighth oldest higher education institution in the UK;
 - Founded in 1821; Awarded University status by Royal Charter in 1966;
 - The name: commemorating two champions (George Heriot & James Watt) of commerce, education and technology;
 - 4 campuses: Edinburgh (main campus), Scottish Border, Dubai, Okney
 - RAE 2008: General Engineering (Electrical, Mechanical, Petroleum) ranked 6th in the UK

George Heriot, financier to King James VI and benefactor of education in Edinburgh (1563 - 1623)

James Watt, the great 18th-Century Scottish engineer and pioneer of steam power



Edinburgh Research Partnership in Engineering and Mathematics (ERPem)

- Heriot-Watt University and the University of Edinburgh: collaborative research venture in Engineering and Mathematics, creating a critical mass of world-leading researchers.
- 2005-2010 (5 years); £22m investment; 26 new academic positions

FRPen

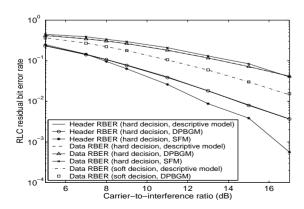
gh Research Partnership in Engineering and Mathematics

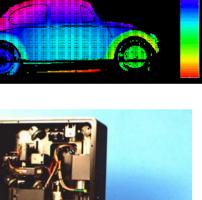
Joint Research Institute for Signal & Image Processing (JRI-SIP)


- Academic staff: 22
 - 10 academics, Institute for Digital • Communications (IDCOM), UoE
 - 12 academics, Signal and Image • Processing Group, HWU.
- Scale of activity: 2008-09
 - **Publications**: Journal 63, • Conference 104
 - **New Research Awards**[•] ~f.6 4m •
 - **Industrial Research ad** • consultancy: £0.75m
 - **Post Doctoral Researchers**: 27 •
 - PhD Students[.] 79 •
 - **Postgraduate Taught MSc** • Students: 99

HWU (12):	UoE (1
Dr Alexander Belyaev	Dr Pei-
Dr Keith Brown	Prof M
Dr Mike Chantler	Prof Pe
Dr Daniel Clark	Dr Har
Dr Paolo Favaro	Dr Jam
Dr Andy Harvey	Prof M
Prof David Lane	Dr Dav
Mr Ronald McHugh	Prof St
Prof Yvan Petillot	Prof Be
Dr Neil Robertson	Dr Joh
Prof Andrew Wallace	
Dr Cheng-Xiang Wang	

(0):


-Jung Chung like Davies eter Grant rald Haas nes Hopgood lervyn Jack vid Laurenson tephen McLaughlin ernard Mulgrew n Thompson


II. Research Areas and Projects

- Distributed sensing applications
- 2D, 3D image interpretation and beyond (hyperspectral, motion, complex)
- Image-world interaction: navigation, monitoring and surveillance
- Non-visible image processing, e.g., mm-wave, lidar, infrared ...
- Algorithms for nonlinear & non-Gaussian signals and systems
- Communications:
 - Wireless communications and networks
 - Large scale wireless communication systems
 - •Video conferencing and visual interfaces

Wireless Communications and Networks (1/2)

- Wireless Propagation Modelling and Simulation
 - For Analog (physical) Channels: real communication environment:
 - MIMO channels, ultra wideband (UWB) channels
 - Frequency diversity channels: FH, OFDM, and MC-CDMA
 - Mobile-to-mobile channels: vehicular communication networks, cooperative comm.
 - Channel simulators: deterministic and stochastic; sum-of-sinusoids based
 - For Digital Channels: a complete transmission chair including transmitter, analog channel, and receiver
 - Hard and soft error models; bit-level and packet-level error models
 - Deterministic process based generative models (DPBGMs)
 - Hidden Markov models

Wireless Communications and Networks (2/2)

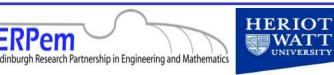
- Cognitive radio networks:
 - Spectrum sensing, interference modeling, interference cancellation, capacity analysis, secondary network design, game theory applications
- Vehicular ad hoc networks (VANET)/vehicle-to-vehicle communications
- Cross-layer optimisation of wireless networks: (non-)convex optimisation
 - Physical layer: rate adaptation (adaptive modulation and coding)
 - Data link layer: opportunistic scheduling, power control, HARQ
- Cooperative (relay) communications: distributed MIMO/beamforming
- (Multiuser) MIMO, OFDM, MIMO-OFDM, UWB
- Mobile ad hoc networks, mesh networks
- 4G wireless mobile communications and beyond

Example Project 1: Comparison of MIMO Channel Models (3GPP SCM and KBSM) --Supported by BenQ Mobile (Siemens-Mobile Phones)

Problem description:

• **3GPP Spatial Channel Model (SCM):**

- The space-time correlation (STC) properties are implicit. Difficult to connect SCM simulation results with theoretical analyses.
- The implementation complexity is high since it has to generate many parameters.


Kronecker-based stochastic model (KBSM):

- Elegant and concise analytical expressions for MIMO channel spatial correlation matrices
 - \rightarrow easy to be integrated into a theoretical framework!
- Less input parameters. Has the KBSM been oversimplified?

• Open issues:

- What is the major physical phenomenon that makes the fundamental difference of two models?
- Under what conditions will two models exhibit similar STC properties?

Research Findings: SCM vs. KBSM

• Fundamental differences between the SCM & KBSM:

	Num. of subpaths	AoA-AoD correlation
SCM	Finite (20)	Correlated
KBSM	Infinite (Gaussian process)	Independent

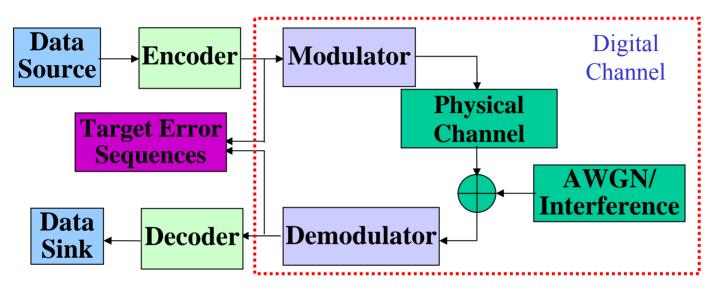
• Equivalent conditions:

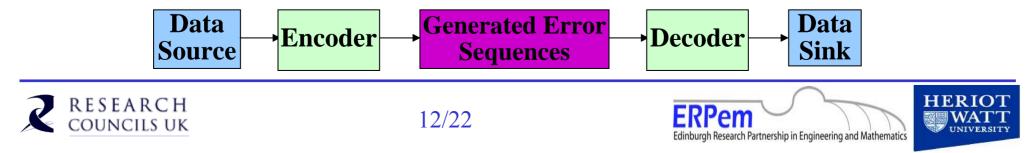
- 1. The number *M* of subpaths in each path for the SCM tends to infinity.
- 2. Two links share the same antenna element at one end, i.e., at either the MS or the BS.
- 3. The same set of angle parameters including the same PAS are used.

10/22

- The KBSM has the advantages of simplicity and analytical tractability, but is restricted to model only the averaging effects of MIMO channels.
- The SCM is more complex but provides more insights of the variations of different MIMO channel realizations.
- C.-X. Wang, X. Hong, H. Wu, and W. Xu, "Spatial temporal correlation properties of the 3GPP spatial channel model and the Kronecker MIMO channel model", *EURASIP Journal on Wireless Communications and Networking*, 2007. <u>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/39871</u>

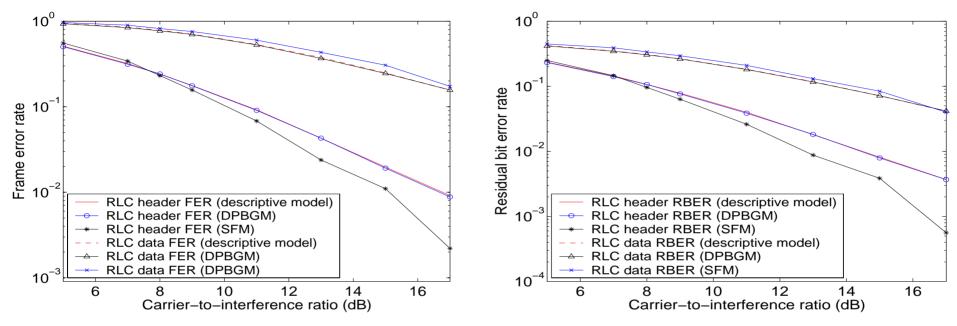
Example Project 2: Error Models for Digital Channels and Applications to Wireless Communication Systems --Supported by Siemens AG-Mobile Phones; EPSRC & Philips


- It is a really time-consuming job to simulate the physical layer.
- Usually, the whole physical layer can be replaced by error sequences corresponding to different channel conditions and different physical layer techniques in the simulation of higher layer protocols.
- Numerous long error sequences are necessary to be generated and stored in the computer for future simulations of higher layer protocols.
- ⇒ Fast error generation mechanisms should be developed!
- Error sequence $\{e_k\}$: the difference between the input sequence and the output sequence of the digital channel, either bit level or packet level.
 - Hard error sequence: $e_k \in \{0,1\}$, k is a nonnegative integer
 - Soft error sequence: $e_k \in [-2^{M-1}, 2^{M-1}-1]$, *M* is a positive integer
- Channel models for characterizing bursty error sequences encountered in digital mobile radio channels are called error models.



Error Models: Digital Channel Models

 Descriptive model (reference model): Analyzes burst error statistics of target error sequences obtained directly from experimental results.



- Generative model (simulation model): Specifies an underlying mechanism that generates error sequences statistically similar to the target error sequences.
 - Advantage: speeds up simulations.

Research Outcomes

 Developed deterministic process based generative models (DPBGMs) and hidden Markov models (HMMs)

C.-X. Wang and W. Xu, "A novel generative approach to speed up performance simulations of wireless communication systems", invention report, Siemens AG, Munich, Germany, registration number: 2004E05718 DE.
C.-X. Wang and W. Xu, "A new class of generative models for burst error characterization in digital wireless channels," *IEEE*

Trans. Communications, vol. 55, no. 3, pp. 453-462, March 2007.

O. S. Salih, C.-X. Wang, and D. I. Laurenson, "Three-layered hidden Markov models for binary digital wireless channels," *Proc. IEEE ICC 2009*, Dresden, Germany, June 2009

O. S. Salih, C.-X. Wang, and D. I. Laurenson, "Soft bit error modeling for discrete wireless channels," *Proc. IWCMC 2009*, Leipzig, Germany, 21-24 June 2009

Example Project 3: Interference Cancellation for Green Radio Networks --Supported by the EPSRC & Mobile VCE Core 5 Green Radio

- Green Radio:
 - Efficient wireless backhaul
 - Low energy wireless: delivery of higher data rates at 100* less power
 - Spectrum aware wireless: autonomous optimisation of spectrum usage, for energy efficiency and for quality of experience
- Main Work:
 - Study efficient receiver interference cancellation techniques
 - Exploit cooperation techniques to aid in interference suppression
 - Methods to estimate performance gains of interference cancellation to report back to the wireless network

III. Suggested Collaboration Topics for Collaborations

- 1. MIMO Channel Modelling, Simulation, and Measurement for 4G
- 2. Cognitive Radio Networks
- 3. Cooperative MIMO
- 4. Vehicular Communication Networks
- Cross-Layer Optimisation (Radio Resource Management) of 4G Wireless Networks

1. MIMO Channel Modelling, Simulation, and Measurement for 4G

- Existing MIMO channel models: COST273, COST259, Winner, 3GPP SCM & wideband SCM, LTE, LTE-Advanced
- **Problems** to consider:
 - Is the standard MIMO channel model too complex/simplified and sufficiently adaptive?
 - Effect of different channel models on the MIMO system performance?
 - Future MIMO channel models: 1) Birth-death process 2) Multiple scatterers 3)
 Space-time-frequency correlation properties (application to MIMO-OFDM)
 4) 3-D channel models
- Channel simulator: 1) Accuracy 2) Simulation efficiency 3) Flexibility/Adaptability
- Measurements: 1) understand physical phenomenon 2) test channel models

2. Cognitive Radio Networks

• Key benefits:

- Provide effective platforms to integrate multiple radio interfaces; Improve cellular spectrum efficiency
- Compliment the 4G cellular spectrum by borrowing/reusing the underutilized spectrum from other radio systems

Proposed research:

• Interference modelling and channel characterisation

- 3-D (space/time/frequency) white space modelling
- Inter-system (primary-secondary) interference modelling; Intra-system interference modelling

• System capacity analysis

- Average/peak/outage interference power constraint
- System architecture (centralized, ad-hoc)
- Multiple access and radio resource allocation schemes

Interference cancellation

- Transformed domain approach; Cyclostationarity-based approach; Spatial processing
- **Publications**: 1 book chapter, 4 journals, 3 journal submissions, 7 conferences

17/22

3. Cooperative MIMO

Background

- Key benefits to 4G systems
 - -Combat fading and shadowing
 - Mitigate multi-cell interference
- Classifications of cooperative MIMO
 - -Between multiple base stations (BSs)
 - Between multiple mobile devices
- Technical challenges
 - Cooperation protocols with reduced signalling overhead
 - Cooperation protocols robust to unreliable channel information
 - Realistic and computation-efficient multi-cell MIMO channel models
 - System level (multi-cell) performance evaluation of cooperative MIMO schemes

Cooperative MIMO (cont.)

- Proposed research topics
 - Multi-cell MIMO channel modelling
 - Correlation model for large scale fading across multi-cells
 - Mobile to mobile channel modelling
 - Parametric/hybrid system level channel models with high computation efficiency
 - Robust multi-cell interference cancellation
 - Distributed multi-cell beamforming and precoding
 - Distributed multi-cell resource allocation
 - Low-complexity cooperative diversity scheme
 - Performance-complexity trade-off
 - -Quantization and feedback of channel state information

4. Vehicular Communication Networks

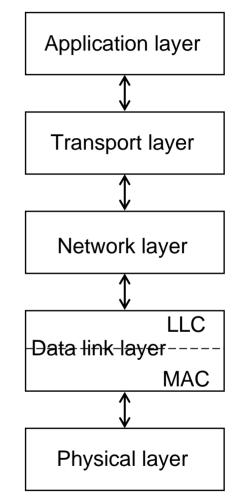
- **Applications**: safety (e.g., automatic collision warning) and non-safety applications (automobile Internet access).
- Both the Tx and Rx are in motion and equipped with low elevation antennas.
 - Differ from conventional fixed-to-mobile (F2M) cellular radio systems in terms of channel characteristics, especially Doppler effects.
- MIMO technology is very promising for vehicular communications since multiple antenna elements can be easily placed on large vehicle surfaces.

Research problems:

- Channel modelling, simulation, and measurement
- Physical, link, and network layer technologies of vehicular networks

20/22

- Cross-layer optimisation
- **Publications**: 1 JSAC SI (coming), 2 journals, 3 journal submissions, 5 conferences



5. Cross-Layer Optimisation (Radio Resource Management) of 4G Wireless Networks

- Traditional layered approach:
 - The protocols at each layer are independently designed.
 - Layers are required to communicate in a strict manner → inflexible, no adaptation to dynamic wireless environments
 - ⇒ Easy for design, but poor system performance and inefficient use of valuable resources (power, spectrum)

Cross-layer design:

- Layers are coupled ← due to power constraints, delay constraints, error performance constraints, etc.
- Jointly optimises protocols by taking advantage of the interaction across different layers.
- ⇒ Significant performance improvement and efficient use of resources but increased design complexity

The Proposed Cross-Layer Design Approach

- The optimisation of the entire network layers simultaneously is very complex and requires near brute-force simulation efforts.
- **Focus**: joint optimisation of the PHY layer and link layer of wireless ad hoc networks.
- Aim: to develop a novel and efficient cross-layer design approach
 - PHY layer: rate control through adaptive coding; error modelling techniques
 - Link layer: power control, scheduling, ARQ
- Error models will be applied to improve simulation efficiency.
- **Optimisation criterion**: to maximize the spectral efficiency (throughput) of wireless ad hoc networks under the prescribed power, delay, and error performance constraints.

