Wireless Mobile Communication and Transmission (WMCT) Lab.

Director: Prof. Dongfeng Yuan

UK-China Science Bridges Project

v

OUTLINE

- General Introduction
- Research Areas
- Desired Research Topics
- Patentable Research Outcomes

WMCT

- Founded in 1988
- Affiliated to School of Information Science and Engineering, Shandong University
 - Financially supported by the 985 subject of the Ministry of Education in China
 - Key laboratory of wideband wireless communications of Shandong

Group Structure of WMCT

- Professor (2)
- \square Lecturer (2)
- M. S. Candidates (26)
- Associate Professors (3)
- □ Ph. D. Candidates (17)
- Postdoctor (3)

м

OUTLINE

- General Introduction
- Research Areas
- Desired Research Topics
- Patentable Research Outcomes

Advanced Channel Coding and Modulation

Multi-Carrier Techniques

Physical Layer Techniques

Channel Modeling, Estimation and Equalization

Multiple-Antenna Techniques

IDMA

Cross-Layer Design and Radio Resource Management

Cognitive Radio

ASIC Design and Implementation

Compressive Sensing

Sensor Networks

Achievements (from 2001)

Books published:

- Theory and Applications of LDPC Codes, 2008
- Principles and Applications of Coded Modulation Techniques, 2006
- Principles of Communications(Chinese version), 2004
- Advanced Channel Coding in Wideband Wireless Communication, 2004
- Cross Layer Design in Wireless Communications -- From Theory to Application,, in Press

Publications:

Over 200 technical publications till now. (SCI: 26, EI: 131)

Patents: 24 filed

Awards: (over 10 items totally)

- Natural science award of China education ministry (Level 2), 2005
- Natural science award of Shandong Province (Level 2), 2007
- Natural science award of Shandong Province (Level 2), 2003

Finished Projects

More than 20 finished projects:

- Research on Key Technologies for Error Correcting schemes at High Speed Transmission Based on OFDM, 2004.1 ~ 2006.12, supported by NSFC, China
 - Propose a frequency-selective multiple-antenna channel model based on the one-ring channel model
 - Propose an improved code-matched interleaver based on Turbo code weight analysis
 - Determining the criterion for selecting the optimal wavelet-basis in wavelet-based multicarrier system
 - Propose to reduce the PAPR in OFDM based on the discrete wavelet transform (DWT)
 - Won the Natural science award of Shandong Province in 2007
- Research on Optimal Coded Modulation Schemes in Mobile Digital and Image Transmission Systems, 1999.1 ~ 2003.1, supported by NSFC, China
- Error correction theory and technology based on space-time-frequency diversity technology, 2004.1~2006.12, Supported by Key Project of Provincial Scientific Foundation of Shandong, China

Ongoing Projects

More than 5 ongoing projects:

- Cross-Layer Design in Wideband Wireless Communication Network, 2007.01 ~ 2009.12, Supported by NSFC, China
 - Novel fairness in multiuser resource allocation based on game theory
 - Spectrum efficiency analysis based on effective bandwidth theory
 - Joint scheduling in wireless communications, e.g., WLAN, CR systems
 - Joint congestion control and MAC design
 - Joint routing scheme and cooperative transmission in WSN
 - Book: Cross-layer design in wireless communications: from theory to application, Science Press, 2009.9
- Research of Relaying and Cooperative Communication Based on Cognitive Radio, 2009.01 ~ 2012.12, Key Project of NSFC, China (cooperate with Tsinghua Univ., et al)
- Research of Multi-Access Technologies for IMT-A, National Significant Science and Technology Standard Project (cooperate with Daoben Li, et al)

Test-Beds

- MIMO Test-Bed, Wireless Sensor Network Test-Bed, ...
- MIMO non-real-time test-bed (finished)
 - MIMO antenna array
 - Mid-frequency processor: ADC/DAC &DUC&DDC
 - PC: base-band process, source signal generation, performance evaluation.

>>> back to Introduction Introduction: Multiple Input Multiple Output (MIMO) system is intended for turning simulated wireless environment which is for evaluating MIMO related algorithms into reality. Baseband samples are generated through MATLAB in a remote access point, transferred to the upconverter and received back from the downconverter through wireless LAN or wire LAN with a socket program. The whole procedure of upconversion, transmission through multipleantenna wireless channel and downconversion is hidden from the users by simply calling a MATLAB command, so users can generate baseband samples on their own computers and share the upconverter as well as downconverter with 计算机

■ MIMO real-time test-bed (ongoing)

- MIMO antenna array
- Mid-frequency processor: ADC/DAC &DUC&DDC
- DSP base-band process
- PC: source signal generation, performance evaluation.

OUTLINE

- General Introduction
- Research Areas
- Desired Research Topics
- Patentable Research Outcomes

Application of MIMO Test-Bed

■ MIMO Test-Bed

- Provide real MIMO wireless channel to overcome the limitation of simulation model.
- Can be used for theory and algorithm verification, such as base-band algorithm, key technologies for software and hardware development.
- Support prototype development and performance evaluation for standard system.

■ The test-bed applies to (not limited to)

- Source coding: H.264 MPEG-4
- Channel coding: LDPC, Turbo
- Synchronization: simple correlation, MML
- Beaming forming: RRC filtering
- MIMO technologies: Alamouti coding
- Modulation: QPSK, M-QAM
- Channel estimation: LS

MIMO Non-Real-Time Test-Bed

Institute		Universidade		
	Bremen University, Germany	da Coruña, Spain	University of Texas, America	Shandong University, China
Parameters				
Num. of Antennas	8X8	4X4	4X4	4X4, extendable
RF	2.4GHZ	2.4 GHz	2.4 GHz and 5.2 GHz	2.4 GHz
IF	none	70MHZ	none	70MHZ/programmable (0-100MHZ)
Sampling Frequency	10MHZ, 40MHZ, 50MHZ, PLL and External Input	Unknown	105 MHz(TX), 20MHZ(RX)	200MHZ/(4xN) (TX), N=1 to 63; 100MHZ/ L (RX), L=16 to 8192;
Bandwidth	16MHZ	16MHZ	10MHz	10MHz
AD/DA	12bit	Unknown	14bit	14bit
FIFO	512K(TX),1024K(RX)	1024K(RX)	Unknown	One Channel: 128K(TX),128K(RX); Others: 128K(TX),32K(RX)
Architecture	Baseband Samples : MATLAB; TX/RX: Hardware;	Baseband Samples : MATLAB; TX/RX: Hardware;	Baseband Samples: MATLAB; TX/RX: Hardware;	Baseband Samples : MATLAB; TX/RX: Hardware;
Network Sharing	Not supported	Supported Details Unknown	Not supported	Supported: (easy for use) Matlab functions
Publications & IPR	A Multiple-Antenna System for ISM Band Transmission - Calibration Issues and Eigenbeam Measurements, InOWo 2008	A Distributed Multilayer Architecture enabling End- User Access to MIMO	Rapid Prototyping of A Cost Effective and Flexible 4x4 MIMO Testbed, IEEE SAM2008	Patent ID: 200710114176.X Patent Name: Distributed MIMO Wireless Communication Testbed

MIMO Real-Time Test-Bed

Institute Parameters	Brigham Young University, Britain	University of Queensland (UQ), Australia	University Duisburg-Essen, Germany	Shandong University, China
Num. of Antennas	4X4(scalable to 8X8)	2 X2	4X4	4X4,extendable
RF	2.4GHZ	2.4GHZ/5GHZ	2.4GHZ	2.4GHz
ΙF	8MHZ	Unknown	15~20MHZ	70MHZ,programmable (0-100MHZ)
Sampling Frequency	Maximum 200MS/s	Maximum 125MS/s	160MHZ(TX) 105MHZ(RX)	160 MHz – 400 MHz (TX) 125MHZ(RX)
Bandwidth	10MHZ	Unknown	15~20MHZ	20MHZ
AD/DA	12bit	14 bit	DA 16bit AD 14bit	DA 16bit AD 14bit
Architecture	Baseband Processing: TI TMS6203 fixed-point 300MHZ DSPs DUC:Pentek6229 DDC:Pentek6216	Baseband Samples: C++ TX/RX: Hardware: FPGA Altera;	Baseband Samples: TI TMS3206416 1.600MHz; IF: FPGA Xilinx Virtex 2	Baseband Samples : TI TMS3206416T 1GHz ; IF : FPGA Xilinx Virtex 4
Publications & IPR	•	2x2 MIMO Testbed for Dual 2.4GHz/5GHz Band,	MIMO Prototyping Using Sundance's Hardware and Software Products, Sundance Application Notes, www.sundance.com	

Cross Layer Design and Radio Resource Management

Cross Layer Design and Radio Resource Management (Cont.)

- Link-based adaptive transmission technologies
 - CLD: PHY + MAC
 - RRM: improve spectrum efficiency
- End-to-end QoS guaranteed resource allocation
 - CLD: PHY + MAC + Transport
 - RRM: improve end-to-end QoS defined at Transport layer
- APP-aware RRM for multimedia communications
 - CLD: PHY + MAC + APP
 - RRM: improve end-to-end QoS defined at APP layer

Supported by:

NFSC: Cross-Layer Design in Wideband Wireless Communication Network

Cognitive Radio (CR)

- Radio resource management based on CR
 - Spectrum sensing, spectrum management, spectrum share
 - Compressive Sensing
- RRM based CLD in cognitive and cooperative networks
 - Routing protocol design based on cooperative relay selection.
 - Fairness in multi-hop networks
 - RRM based on CLD

Supported by:

- Key Project of NFSC: Research of Relaying and Corporative Communication Based on Cognitive Radio (Partner: Tsinghua University, Prof. Zhigang Cao)
- Key Project of Provincial Scientific Foundation of Shandong: Research of Cross-Layer Optimization Theory in Multi-hop Cognitive Radio Networks

OUTLINE

- General Introduction
- Research Areas
- Desired Research Topics
- Patentable Research Outcomes

Patentable Outcomes

- Real testbed of distributed MIMO communication system 200710114176.x;
- Adaptive Channel Estimation for MIMO Non-Realtime Testbed 200810157204.0
- A new-style synchronous training sequence for non-real-time MIMO testbed, 200810159284.3
- A joint time syschronization and channel estimation scheme for MIMO real time testbed, 200810158142.5
- A design scheme of high rate orthogonal STBC code with four transmitting antennas, 200810014483.5
- A low complexity decoding scheme for quasi-orthogonal space-time block code 200710113841.3

Patentable Outcomes (Cont.)

- Improved decoding algorithm of OVCDM 200810015370.7
- An improving sphere decoding algorithm using in OvCDM, 200810158049.4
- Packet scheduling algorithm based on backoff algorithm for IEEE 802.11 WLAN 200710113258.2
- Enhance system performance of WLAN 200810014876.6;
- Low complexity turbo equalization base on precoding 200810015787.3
- Adaptive Cooperative HARQ based on adaptive modulation and coding 200810016212.3
- A Design Method of Pulse Interpolation Shaping Filter 200810157205.5

Thanks for your attention!

