Cyclostationary Signatures in OFDM-Based Cognitive Radios With Cyclic Delay Diversity

Shanghai Research Center for Wireless Communications (WiCO), China

July 27, 2009
Outline

1 Introduction

2 System Model

3 Intrinsic Cyclostationary Signatures in CDD-OFDM

4 Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results

5 Conclusions
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Introduction

Cyclostationary signature for cognitive radios

As defined in [4], a cyclostationary signature is a feature, intentionally embedded in the physical properties of digital communications signal, which may be easily generated, manipulated, detected and analyzed using low-complexity transceiver architecture.

The cyclostationary signatures provide a robust mechanism for signal detection, network identification and signal acquisition as part of the process of network coordination without the requirement of a dedicated control channel.
Cyclostationarity of OFDM Signals

<table>
<thead>
<tr>
<th>CP-induced cyclostationarity</th>
<th>Transmitter-induced cyclostationarity</th>
<th>CDD-induced cyclostationarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to the CP length, (cannot be altered).</td>
<td>subcarrier mapping [4]; specific preamble insertion [7]</td>
<td>Flexible to manipulate with respect to cyclic delay</td>
</tr>
<tr>
<td>Unsuitable for use in network coordination of cognitive radios.</td>
<td>The cost of bandwidth</td>
<td>No bandwidth overhead, while achieving the delay diversity gain</td>
</tr>
<tr>
<td></td>
<td>Only in specific elements of transmitted signal</td>
<td>Continuous presence in a transmitted signal</td>
</tr>
</tbody>
</table>
Cyclostationarity of OFDM Signals

<table>
<thead>
<tr>
<th>CP-induced cyclostationarity</th>
<th>Transmitter-induced cyclostationarity</th>
<th>CDD-induced cyclostationarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Related to the CP length, (cannot be altered).</td>
<td>1 subcarrier mapping [4]; specific preamble insertion [7]</td>
<td>1 Flexible to manipulate with respect to cyclic delay</td>
</tr>
<tr>
<td>2 Unsuitable for use in network coordination of cognitive radios.</td>
<td>2 The cost of bandwidth</td>
<td>2 No bandwidth overhead, while achieving the delay diversity gain</td>
</tr>
<tr>
<td>3</td>
<td>3 Only in specific elements of transmitted signal</td>
<td>3 Continuous presence in a transmitted signal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cyclostationarity of OFDM Signals

<table>
<thead>
<tr>
<th>CP-induced cyclostationarity</th>
<th>Transmitter-induced cyclostationarity</th>
<th>CDD-induced cyclostationarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Related to the CP length, (cannot be altered).</td>
<td>1 subcarrier mapping [4]; specific preamble insertion [7]</td>
<td>1 Flexible to manipulate with respect to cyclic delay</td>
</tr>
<tr>
<td>2 Unsuitable for use in network coordination of cognitive radios.</td>
<td>2 The cost of bandwidth</td>
<td>2 No bandwidth overhead, while achieving the delay diversity gain</td>
</tr>
<tr>
<td>3</td>
<td>3 Only in specific elements of transmitted signal</td>
<td>3 Continuous presence in a transmitted signal</td>
</tr>
</tbody>
</table>
Cyclostationarity of OFDM Signals

CP-induced cyclostationarity
1. Related to the CP length, (cannot be altered).
2. Unsuitable for use in network coordination of cognitive radios.

Transmitter-induced cyclostationarity
1. Subcarrier mapping [4]; specific preamble insertion [7]
2. The cost of bandwidth
3. Only in specific elements of transmitted signal

CDD-induced cyclostationarity
1. Flexible to manipulate with respect to cyclic delay
2. No bandwidth overhead, while achieving the delay diversity gain
3. Continuous presence in a transmitted signal
Outline

1. Introduction

2. System Model

3. Intrinsic Cyclostationary Signatures in CDD-OFDM

4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results

5. Conclusions
System Model: CDD-OFDM

Transmit architecture of OFDM system utilizing CDD

\[\{c_{1,k}\}_{k=0}^{N-1} \rightarrow \text{OFDM Modulation} \rightarrow \tilde{s}_1[k] \rightarrow \frac{1}{\sqrt{N_T}} \rightarrow \Delta_2 \rightarrow \text{Cyclic Prefix} s_{l,1}[k] \yup \rightarrow \Delta_n \rightarrow \text{Cyclic Prefix} s_{l,2}[k] \yup \rightarrow \Delta_{N_T} \rightarrow \text{Cyclic Prefix} s_{l,nr}[k] \yup \rightarrow \text{Cyclic Prefix} s_{l,N_T}[k] \yup \]
Standard conformability

- Implement only in relays being transparent to destination receiver side
- It can be incorporated within the OFDM-based standards such as WiMAX, 3GPP-LTE, and IEEE 802.11a etc., considering the size and cost of multiple antennas is prohibitive for wireless devices.
CDD-OFDM: Appealing Features

Standard conformability

- Implement only in relay nodes being transparent to destination receiver side
- It can be incorporated within the OFDM-based standards such as WiMAX, 3GPP-LTE, and IEEE 802.11a etc., considering the size and cost of multiple antennas is prohibitive for wireless devices.
CDD-OFDM: Appealing Features

1. Standard conformability
2. Delay diversity gain

- **Delay diversity gain**
 - Convert virtual MISO channel into an equivalent SISO channel with increased frequency diversity.
 - Transform delay diversity into frequency diversity
 - Collect increased diversity by an outer error control coding such as convolutional coding
CDD-OFDM: Appealing Features

1. Standard conformability
2. Delay diversity gain

Delay diversity gain

- Convert virtual **MISO** channel into an equivalent **SISO** channel with increased frequency diversity.
- Transform delay diversity into **frequency diversity**
- Collect increased diversity by an outer error control coding such as convolutional coding
CDD-OFDM: Appealing Features

1. Standard conformability
2. Delay diversity gain

Delay diversity gain

- Convert virtual **MISO** channel into an equivalent **SISO** channel with increased frequency diversity.
- Transform delay diversity into **frequency diversity**
- Collect increased diversity by an outer **error control coding** such as convolutional coding
CDD-OFDM: Appealing Features

1. Standard conformability
2. Delay diversity gain
3. Saturation effect

Saturation effect [1]

\[\Delta n_T \geq \frac{1}{B T_s} \quad (n_T = 1, 2, \ldots, N_T) \] is a saturation region in terms of cyclic delays, where \(B \) is bandwidth of OFDM signal and \(T_s \) is sample period.

- In the saturation region, the system can achieve almost the same delay diversity gain approaching to the maximum.
- Saturation effect allows for tuning cyclic delays for other metrics, while keeping the desirable performance of antenna system.
CDD-OFDM: Appealing Features

1. Standard conformability
2. Delay diversity gain
3. Saturation effect

Saturation effect [1]

\[\Delta_{nT} \geq \frac{1}{BT_s} (n_T = 1, 2, \ldots, N_T) \] is a saturation region in terms of cyclic delays, where \(B \) is bandwidth of OFDM signal and \(T_s \) is sample period.

In the saturation region, the system can achieve almost the same delay diversity gain approaching to the maximum.

Saturation effect allows for tuning cyclic delays for other metrics, while keeping the desirable performance of antenna system.
CDD-OFDM: Appealing Features

1 Standard conformability
2 Delay diversity gain
3 Saturation effect

Saturation effect [1]

- $\Delta n_T \geq \frac{1}{B T_s}$ ($n_T = 1, 2, \cdots, N_T$) is a saturation region in terms of cyclic delays, where B is bandwidth of OFDM signal and T_s is sample period.
- In the saturation region, the system can achieve almost the same delay diversity gain approaching to the maximum.
- Saturation effect allows for tuning cyclic delays for other metrics, while keeping the desirable performance of antenna system.
System Model: Signal Formulation

\[s_{l,n_T}(k) = \frac{1}{\sqrt{N_T}} \tilde{s}_l[(k - \Delta_{n_T}) \mod N], \quad (1) \]

where \(\Delta_{n_T} \) is the antenna-dependent cyclic delay (\(0 = \Delta_1 < \Delta_2 < \cdots < \Delta_{N_T} \)).

\[s_{n_T}(n) = \frac{1}{N_T} \sum_{l=-\infty}^{+\infty} g(n - lM) \sum_{k=0}^{N-1} c_{l,k} W_N^{k\Delta_{n_T}} W_N^{k(lM-n)} \quad (2) \]

where \(M = N + N_G \) and \(g(n) = R_{[0,M-1]}^{(n)} \) with

\[R_{[T_1,T_2]}^{(n)} = \begin{cases} 1 & n = T_1, T_1 + 1, \cdots, T_2 \\ 0 & \text{else} \end{cases} \quad (3) \]

The CDD-OFDM signal received by one antenna can be written as

\[r(n) = \sum_{l=0}^{L_h} h_l s(n - l) + w(n) \quad (4) \]
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Cyclostationary Characteristics of CDD-OFDM Signal

- Defining the correlation matrix of the vector random process $\mathbf{s}(n)$ as

$$
\mathbf{C}_s(n, \tau) = E\{\mathbf{s}(n)\mathbf{s}^H(n + \tau)\}
$$

(5)

- Cyclic Autocorrelation Function (CAF)

$$
\tilde{c}_r(k, \tau) = \sum_{n=0}^{M-1} c_r(n, \tau) W_M^{kn}
$$

(6)

$$
= \sum_{l=0}^{L_h} h_l W_M^{kl} \sum_{r=\tau+l-L_h}^{\tau+l} \tilde{C}_s(k, r) h_{\tau+l-r}^H + c_w(\tau) \delta(k)
$$
Cyclostationary Characteristics of CDD-OFDM Signal

\[[C_s(n, \tau)]_{i,j} = \frac{1}{N_T} \sum_{l=-\infty}^{+\infty} g(n - lM)g(n + \tau - lM)\delta_N[\tau - (\Delta_j - \Delta_i)] \]

\[
= \begin{cases}
\frac{1}{N_T} \sum_{l=-\infty}^{+\infty} R^{(n-lM)}_{[0,M-1-(\Delta_j-\Delta_i)]} & 0 \leq \tau = (\Delta_j - \Delta_i) \\
\frac{1}{N_T} \sum_{l=-\infty}^{+\infty} R^{(n-lM)}_{[-(\Delta_j-\Delta_i),M-1]} & \tau = (\Delta_j - \Delta_i) < 0 \\
\frac{1}{N_T} \sum_{l=-\infty}^{+\infty} R^{(n-lM)}_{[0,M-1-N-(\Delta_j-\Delta_i)]} & 0 \leq \tau = N + (\Delta_j - \Delta_i) \leq M-1 \\
\frac{1}{N_T} \sum_{l=-\infty}^{+\infty} R^{(n-lM)}_{[N-(\Delta_j-\Delta_i),M-1]} & 1 - M \leq \tau = -N + (\Delta_j - \Delta_i) \leq 0 \\
0 & \text{else}
\end{cases}
\]
Intrinsic Cyclostationary Signatures in CDD-OFDM

\(N_T = 2, N = 32, N_G = 8 \)

\[\Delta_2 = 4 \]

\[\Delta_2 = 10 \]

A sequence of lag-indexed spectrum lines indexed by the following indices set

\[\Omega = \{ \tau | \tau = \pm (\Delta_j - \Delta_i), N \pm (\Delta_j - \Delta_i), -N \pm (\Delta_j - \Delta_i); i, j = 1, 2, \ldots, N_T \}. \] (8)
Outline

1. Introduction
2. System Model
3. Intrinsic Cyclostationary Signatures in CDD-OFDM
4. Application to Spectrum Sensing
 - Asymptotical CFAR Testing Based on Multiple Lags
 - Numerical Results
5. Conclusions
Asymptotical CFAR testing based on multiple lags

The hypothesis testing for the presence of primary user can transform to the problem for testing if \(\alpha \) is a cyclic frequency, formulated as

\[
H_0 : \forall \tau \Rightarrow \hat{c}_r(\alpha, \tau) = \varepsilon(\alpha, \tau);
\]
\[
H_1 : \text{For some } \tau \subseteq \Omega \Rightarrow \hat{c}_r(\alpha, \tau) = c_r(\alpha, \tau) + \varepsilon(\alpha, \tau)
\]

\(\varepsilon(\alpha, \tau) : \lim_{L \to \infty} \sqrt{L} \varepsilon(\alpha, \tau) \sim \mathcal{N}(0, \Sigma_r(\alpha, \tau)) \).

Generalized Likelihood Ratio (GLR):

\[
T_r(\alpha, \tau) = -2 \ln \Lambda = L\hat{c}_r(\alpha, \tau)\hat{\Sigma}_r^{-1}(\alpha, \tau)\hat{c}_r^T(\alpha, \tau).
\]

Under the null hypothesis, \(T_r(\alpha, \tau) \) is asymptotically \(\chi^2_{2N_\tau} \) distributed. As a result, we can present the test which is based on a CFAR approach for selecting a threshold.
Common Simulation Parameters

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>DESCRIPTION</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>DFT size</td>
<td>128</td>
</tr>
<tr>
<td>Δ_f</td>
<td>Subcarrier frequency spacing</td>
<td>10.9325 kHz</td>
</tr>
<tr>
<td>f_s</td>
<td>Sampling frequency</td>
<td>2.798720 MHz</td>
</tr>
<tr>
<td>N_G/N</td>
<td>CP ratio</td>
<td>1/8</td>
</tr>
<tr>
<td>f_c</td>
<td>Carrier frequency</td>
<td>2.5 GHz</td>
</tr>
<tr>
<td>$T_o = 1/\Delta_f$</td>
<td>OFDM symbol duration without CP</td>
<td>91.43 μs</td>
</tr>
<tr>
<td>T</td>
<td>OFDM symbol duration with CP</td>
<td>102.86 μs</td>
</tr>
<tr>
<td>Modulation</td>
<td></td>
<td>16QAM</td>
</tr>
<tr>
<td>N_T</td>
<td>Number of transmit antennas</td>
<td>2</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
<td>0 m/s</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
<td>$-10 \log \sigma_w^2$ dB</td>
</tr>
<tr>
<td>L</td>
<td>Length of observations</td>
<td>$10 \times T$</td>
</tr>
<tr>
<td>L_w</td>
<td>Length of Kaiser window</td>
<td>1029</td>
</tr>
<tr>
<td>β</td>
<td>β parameter of Kaiser window</td>
<td>10</td>
</tr>
<tr>
<td>α</td>
<td>Given cyclic frequency for detection</td>
<td>$1/T$</td>
</tr>
</tbody>
</table>
Typical set of multiple lags

From the set of Ω, we adopt the following typical sets as observation spots

$$\tau_1 = [-128, -128 + \Delta_2, -\Delta_2, \Delta_2, 128 - \Delta_2, 128], \quad (\Delta_2 \neq 64)$$

$$\tau_2 = [-128, 128]$$

$$\tau_3 = [-128 - \Delta_2, -128, -128 + \Delta_2, -\Delta_2, \Delta_2, 128 - \Delta_2, 128, 128 + \Delta_2], \quad (\Delta_2 \leq 15)$$

$$\tau_4 = [-128, -64, 64, 128].$$

Detection probability versus cyclic delay with different methods

$SNR = -12$ dB

$PFA = 0.05$
Simulation results

Detection probability versus SNR with different methods

Receiver operating characteristics with different methods

Detection probability versus SNR with different methods:
- \(\tau_1 \)-detector, \(\Delta_2 = 16 \)
- \(\tau_1 \)-detector, \(\Delta_2 = 61 \)
- \(\tau_2 \)-detector, \(\Delta_2 = 16 \)
- \(\tau_2 \)-detector, \(\Delta_2 = 61 \)

PFA = 0.05

SNR = -12 dB

Detection Probability

SNR (dB)

Detection Probability

PFA

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0 0.2 0.4 0.6 0.8 1.0
Introduction

System Model

Intrinsic Cyclostationary Signatures in CDD-OFDM

Application to Spectrum Sensing

Conclusions

Outline

1 Introduction

2 System Model

3 Intrinsic Cyclostationary Signatures in CDD-OFDM

4 Application to Spectrum Sensing
 • Asymptotical CFAR Testing Based on Multiple Lags
 • Numerical Results

5 Conclusions
The procedure of Cyclic Delay Diversity (CDD) simultaneously possess the dual advantages in terms of antenna diversity and cognitive radios.

- For the OFDM-based cognitive radios, the CDD procedure can be characterized as a cost-efficient approach to generating flexible cyclostationary signatures.

- The CDD-induced cyclostationary signatures may be easily implemented, manipulated, detected and analyzed using the standard compatible CDD-OFDM architectures without suffering signaling overhead.

- The novel approach still achieves the initial goal toward the delay diversity gain which originally drives the CDD procedure into real applications.